Gina Abelló

Learn More
Otic neuronal precursors are the first cells to be specified and do so in the anterior domain of the otic placode, the proneural domain. In the present study, we have explored the early events of otic proneural regionalization in relation to the activity of the Notch signaling pathway. The proneural domain was characterized by the expression of Sox3, Fgf10(More)
The development of neural tissue starts with the activation of early neural genes such as the SoxB1 transcription factors, which are expressed in response to signaling molecules. Neural progenitors in the inner ear are only generated in the anterior placodal domain, but the mechanisms that determine when and how otic neural fate is acquired are still(More)
During inner ear development, Notch exhibits two modes of operation: lateral induction, which is associated with prosensory specification, and lateral inhibition, which is involved in hair cell determination. These mechanisms depend respectively on two different ligands, jagged 1 (Jag1) and delta 1 (Dl1), that rely on a common signaling cascade initiated(More)
Notch signaling plays a crucial role during inner ear development and regeneration. Hes/Hey genes encode for bHLH transcription factors identified as Notch targets. We have studied the expression and regulation of Hes/Hey genes during inner ear development in the chicken embryo. Among several Hes/Hey genes examined, only Hey1 and Hes5 map to the sensory(More)
The segregation and myelination of axons in the developing PNS, results from a complex series of cellular and molecular interactions between Schwann cells and axons. Previously we identified the Lgi4 gene (leucine-rich glioma-inactivated4) as an important regulator of myelination in the PNS, and its dysfunction results in arthrogryposis as observed in claw(More)
The development of the inner ear provides a beautiful example of one basic problem in development, that is, to understand how different cell types are generated at specific times and domains throughout embryonic life. The functional unit of the inner ear consists of hair cells, supporting cells and neurons, all deriving from progenitor cells located in the(More)
The interplay between intrinsic and extrinsic factors is essential for the transit into different cell states during development. We have analyzed the expression and function of FGF10 and FGF-signaling during the early stages of the development of otic neurons. FGF10 is expressed in a highly restricted domain overlapping the presumptive neurogenic region of(More)
Transcriptional regulatory networks are essential during the formation and differentiation of organs. The transcription factor N-myc is required for proper morphogenesis of the cochlea and to control correct patterning of the organ of Corti. We show here that the Otx2 gene, a mammalian ortholog of the Drosophila orthodenticle homeobox gene, is a crucial(More)
A 46-year-old woman was seen with biliary obstruction secondary to a pancreatic tumor. After undergoing a percutaneous liver biopsy, she became septic and went into shock. Haemophilus influenzae type be bacteremia and biliary infection were verified. With treatment, the patient recovered from the infection. Biliary infection by H influenzae is rare, and(More)
Hair-cells, supporting cells and sensory neurons are the main specialized cell-types responsible for mechanotransduction in the inner ear. They derive from precursors expressing proneural genes and recent data has underlined the importance of SoxB1 genes as upstream activators of proneural genes during cranial placode development. Here we review the steps(More)