Gillian Murphy

Learn More
Matrix metalloproteinases (MMPs), also called matrixins, function in the extracellular environment of cells and degrade both matrix and non-matrix proteins. They play central roles in morphogenesis, wound healing, tissue repair and remodelling in response to injury, e.g. after myocardial infarction, and in progression of diseases such as atheroma,(More)
The plant Arabidopsis thaliana (Arabidopsis) has become an important model species for the study of many aspects of plant biology. The relatively small size of the nuclear genome and the availability of extensive physical maps of the five chromosomes provide a feasible basis for initiating sequencing of the five chromosomes. The YAC (yeast artificial(More)
Tissue inhibitors of metalloproteinases (TIMPs) are the major cellular inhibitors of the matrix metalloproteinase (MMP) sub-family, exhibiting varying efficacy against different members, as well as different tissue expression patterns and modes of regulation. Other proteins have modest inhibitory activity against some of the MMPs, including domains of(More)
High-precision genetic mapping was used to define the regions that contain centromere functions on each natural chromosome in Arabidopsis thaliana. These regions exhibited dramatic recombinational repression and contained complex DNA surrounding large arrays of 180-base pair repeats. Unexpectedly, the DNA within the centromeres was not merely structural but(More)
The cDNA of a novel matrix metalloproteinase, collagenase-3 (MMP-13) has been isolated from a breast tumor library (Freije, J. M. P., Dicz-Itza, I., Balbin, M., Sanchez, L. M., Blasco, R., Tolivia, J., and López-Otin, C. (1994) J. Biol. Chem. 269, 16766-16773), and a potential role in tumor progression has been proposed for this enzyme. In order to(More)
A new system for insertional mutagenesis based on the maize Enhancer/Suppressor-mutator (En/Spm) element was introduced into Arabidopsis. A single T-DNA construct carried a nonautonomous defective Spm (dSpm) element with a phosphinothricin herbicide resistance (BAR) gene, a transposase expression cassette, and a counterselectable gene. This construct was(More)
Gelatinase A and membrane-type metalloproteinase (MT1-MMP) were able to process human procollagenase-3 (Mr 60,000) to the fully active enzyme (Tyr85 N terminus; Mr 48,000). MT1-MMP activated procollagenase-3 via a Mr 56,000 intermediate (Ile36 N terminus) to 48,000 which was the result of the cleavage of the Glu84-Tyr85 peptide bond. We have established(More)
Over the last few years disintegrin metalloproteinases of the Adam (a disintegrin and metalloproteinase) family have been associated with the process of proteolytic 'shedding' of membrane-associated proteins and hence the rapid modulation of key cell signalling pathways in the tumour microenvironment. Furthermore, numerous members of the Adam family have(More)
TNF-alpha converting enzyme (TACE; ADAM-17) is a membrane-bound disintegrin metalloproteinase that processes the membrane-associated cytokine proTNF-alpha to a soluble form. Because of its putative involvement in inflammatory diseases, TACE represents a significant target for the design of specific synthetic inhibitors as therapeutic agents. In order to(More)
The higher plant Arabidopsis thaliana (Arabidopsis) is an important model for identifying plant genes and determining their function. To assist biological investigations and to define chromosome structure, a coordinated effort to sequence the Arabidopsis genome was initiated in late 1996. Here we report one of the first milestones of this project, the(More)