Learn More
In response to tenacious stress signals, such as the unscheduled activation of oncogenes, cells can mobilize tumour suppressor networks to avert the hazard of malignant transformation. A large body of evidence indicates that oncogene-induced senescence (OIS) acts as such a break, withdrawing cells from the proliferative pool almost irreversibly, thus(More)
C57BL/6J mice infected with Plasmodium berghei ANKA develop neurological dysfunction and die within 7 days of infection. We show that treatment of infected mice with a kynurenine-3-hydroxylase inhibitor prevents them from developing neurological symptoms and extends their life span threefold until severe anemia develops.
Macroautophagy (hereafter referred to as autophagy) is a process in which organelles termed autophagosomes deliver cytoplasmic constituents to lysosomes for degradation. Autophagy has a major role in cellular homeostasis and has been implicated in various forms of human disease. The role of autophagy in cancer seems to be complex, with reports indicating(More)
Tryptophan is metabolised primarily along the kynurenine pathway, of which two components are now known to have marked effects on neurons in the central nervous system. Quinolinic acid is an agonist at the population of glutamate receptors which are sensitive to N-methyl-D-aspartate (NMDA), and kynurenic acid is an antagonist at several glutamate receptors.(More)
1. Metabolism of tryptophan along the oxidative pathway via kynurenine results in the production of quinolinic acid and kynurenic acid, which can act on glutamate receptors in peripheral tissues. We have now measured the concentrations of kynurenine pathway metabolites in the plasma of patients with osteoporosis before treatment with drugs, throughout and(More)
Previous work has shown that some cancer cells are highly dependent on serine/glycine uptake for proliferation. Although serine and glycine can be interconverted and either might be used for nucleotide synthesis and one-carbon metabolism, we show that exogenous glycine cannot replace serine to support cancer cell proliferation. Cancer cells selectively(More)
In previous studies tryptophan loads have been administered to human subjects in order to raise central levels of 5-hydroxytryptamine (5HT) and assess the effects of 5HT on behaviour and mood. However, tryptophan is metabolised primarily along the oxidative kynurenine pathway. In this study a 6 g oral tryptophan load was administered to 15 healthy(More)
Abnormalities in the kynurenine pathway may play a role in Huntington's disease (HD). In this study, tryptophan depletion and loading were used to investigate changes in blood kynurenine pathway metabolites, as well as markers of inflammation and oxidative stress in HD patients and healthy controls. Results showed that the kynurenine : tryptophan ratio was(More)
Of the major components of the kynurenine pathway for the oxidative metabolism of tryptophan, most attention has focussed on the N-methyl-D-aspartate (NMDA) receptor agonist quinolinic acid, and the glutamate receptor blocker kynurenic acid. However, there is increasing evidence that the redox-active compound 3-hydroxyanthranilic acid may also have potent(More)
A functional genomics study revealed that the activity of acetyl-CoA synthetase 2 (ACSS2) contributes to cancer cell growth under low-oxygen and lipid-depleted conditions. Comparative metabolomics and lipidomics demonstrated that acetate is used as a nutritional source by cancer cells in an ACSS2-dependent manner, and supplied a significant fraction of the(More)