Gilles Tarjus

Learn More
One of the most spectacular phenomena in physics in terms of dynamical range is the glass transition and the associated slowing down of flow and relaxation with decreasing temperature. That it occurs in many different liquids seems to call for a " universal " theory. In this article, we review one such theoretical approach which is based on the concept of "(More)
The adsorption or adhesion of large particles (proteins, colloids, cells,. . .) at the liquid-solid interface plays an important role in many diverse applications. Despite the apparent complexity of the process, two features are particularly important: 1) the adsorption is often irreversible on experimental time scales and 2) the adsorption rate is limited(More)
The cuprate high-temperature superconductors have been the focus of unprecedentedly intense and sustained study not only because of their high superconducting transition temperatures, but also because they represent the most exquisitely investigated examples of highly correlated electronic materials. In particular, the pseudogap regime of the phase diagram(More)
We investigate both analytically and by numerical simulation the kinetics of a microscopic model of hard rods adsorbing on a linear substrate, a model which is relevant for compaction of granular materials. The computer simulations use an event-driven algorithm which is particularly efficient at very long times. For a small, but finite desorption rate, the(More)
We provide a framework to build periodic boundary conditions on the pseudosphere (or hyperbolic plane), the infinite two-dimensional Riemannian space of constant negative curvature. Starting from the common case of periodic boundary conditions in the Euclidean plane, we introduce all the needed mathematical notions and sketch a classification of periodic(More)
We use recently introduced three-point dynamic susceptibilities to obtain an experimental determination of the temperature evolution of the number of molecules Ncorr that are dynamically correlated during the structural relaxation of supercooled liquids. We first discuss in detail the physical content of three-point functions that relate the sensitivity of(More)
We investigate the influence of space curvature, and of the associated frustration, on the dynamics of a model glass former: a monatomic liquid on the hyperbolic plane. We find that the system's fragility, i.e., the sensitivity of the relaxation time to temperature changes, increases as one decreases the frustration. As a result, curving space provides a(More)
We study the role of the attractive intermolecular forces in the viscous regime of a simple glass-forming liquid by using computer simulations. To this end, we compare the structure and the dynamics of a standard Lennard-Jones glass-forming liquid model with and without the attractive tail of the interaction potentials. The viscous slowing down of the two(More)
We show that, in the equilibrium phase of glass-forming hard-sphere fluids in three dimensions, the static length scales tentatively associated with the dynamical slowdown and the dynamical length characterizing spatial heterogeneities in the dynamics unambiguously decorrelate. The former grow at a much slower rate than the latter when density increases.(More)
We investigate the characteristic length scales associated with the glass transition phenomenon. By studying an atomic glass-forming liquid in negatively curved space, for which the local order is well identified and the amount of frustration opposing the spatial extension of this order is tunable, we provide insight into the structural origin of the main(More)