Learn More
At variance with the current view that only liver and kidney are gluconeogenic organs, because both are the only tissues to express glucose-6-phosphatase (Glc6Pase), we have recently demonstrated that the Glc6Pase gene is expressed in the small intestine in rats and humans and that it is induced in insulinopenic states such as fasting and diabetes. We used(More)
PEPCK is a key enzyme of gluconeogenesis in liver and kidney. Recently, we have shown that small intestine also contributes to the endogenous glucose production in insulinopenia in rats and that glutamine is the main precursor of glucose synthesized in this tissue. The expression of the PEPCK gene in rat and human small intestine and the effect of(More)
Soluble dietary fibers promote metabolic benefits on body weight and glucose control, but underlying mechanisms are poorly understood. Recent evidence indicates that intestinal gluconeogenesis (IGN) has beneficial effects on glucose and energy homeostasis. Here, we show that the short-chain fatty acids (SCFAs) propionate and butyrate, which are generated by(More)
Unlike the adjustable gastric banding procedure (AGB), Roux-en-Y gastric bypass surgery (RYGBP) in humans has an intriguing effect: a rapid and substantial control of type 2 diabetes mellitus (T2DM). We performed gastric lap-band (GLB) and entero-gastro anastomosis (EGA) procedures in C57Bl6 mice that were fed a high-fat diet. The EGA procedure specifically(More)
Protein feeding is known to decrease hunger and subsequent food intake in animals and humans. It has also been suggested that glucose appearance into portal vein, as occurring during meal assimilation, may induce comparable effects. Here, we connect these previous observations by reporting that intestinal gluconeogenesis (i.e., de novo synthesis of glucose)(More)
Protein-enriched diets are well known to initiate satiety effects in animals and humans. It has been recently suggested that this might be dependent on the induction of gluconeogenesis in the intestine. The resulting intestinal glucose release, detected by a "so-called" glucose sensor located within the walls of the portal vein and connected to peripheral(More)
OBJECTIVE Since the pioneering work of Claude Bernard, the scientific community has considered the liver to be the major source of endogenous glucose production in all postabsorptive situations. Nevertheless, the kidneys and intestine can also produce glucose in blood, particularly during fasting and under protein feeding. The aim of this study was to(More)
Insulin initiates diverse hepatic metabolic responses, including gluconeogenic suppression and induction of glycogen synthesis and lipogenesis. The liver possesses a rich sinusoidal capillary network with a higher degree of hypoxia and lower gluconeogenesis in the perivenous zone as compared to the rest of the organ. Here, we show that diverse vascular(More)
Intestinal gluconeogenesis is involved in the control of food intake. We show that mu-opioid receptors (MORs) present in nerves in the portal vein walls respond to peptides to regulate a gut-brain neural circuit that controls intestinal gluconeogenesis and satiety. In vitro, peptides and protein digests behave as MOR antagonists in competition experiments.(More)
The neural sensing of nutrients during food digestion plays a key role in the regulation of hunger. Recent data have emphasized that the extrinsic gastrointestinal nervous system is preponderant in this phenomenon and in its translation to the control of food intake by the central nervous system (CNS). Nutrient sensing by the extrinsic gastrointestinal(More)