Learn More
It has been postulated that the developing sympathetic innervation of rat eccrine sweat glands changes from adrenergic to cholinergic under the influence of its target. In agreement with previous evidence that the sympathetic innervation of adult rat sweat glands is cholinergic, we found that choline acetyltransferase (CAT)-immunoreactive nerve fibers are(More)
Catecholamine synthetic enzymes are found in many cranial parasympathetic principal neurons, and in the small intensely fluorescent (SIF) cells that populate parasympathetic as well as sympathetic ganglia. While there is evidence that the acquisition of noradrenergic properties in sympathetic neuron precursors depends on factors that these cells encounter(More)
Rat pineal hydroxyindole-O-methyltransferase is controlled similarly to adrenal medullary phenylethanolamine N-methyltransferase. S-adenosylmethionine (SAM), the in vivo cofactor utilized by the enzyme to convert N-acetylserotonin to melatonin, protects this methyltransferase against tryptic proteolysis in vitro. Furthermore, in vivo studies suggest that(More)
Estrogen exposure is a risk factor for breast cancer. Given that HSD17B2 gene encodes an enzyme that catalyses estradiol inactivation, it appears as a good candidate breast cancer susceptibility gene. This study was designed to screen for HSD17B2 germline mutations potentially involved in breast cancer predisposition. Our re-sequencing analysis did not(More)
Neuropeptide Y (NPY) is widely distributed in the sympathetic nervous system, where it is colocalized with norepinephrine. We report here that NPY-immunoreactive neurons are also abundant in three cranial parasympathetic ganglia, the otic, sphenopalatine, and ciliary, in the rat. High-performance liquid chromatographic analysis of the immunoreactive(More)
We recently showed that neuropeptide Y (NPY)-like immunoreactivity occurs in subpopulations of neurons in 3 cranial parasympathetic ganglia: the otic, sphenopalatine, and ciliary. The present work identifies the target tissues innervated by cranial parasympathetic NPY-immunoreactive neurons. Plexuses of NPY-immunoreactive fibers were observed in the parotid(More)
Several studies have suggested that the development of cholinergic properties in cranial parasympathetic neurons is determined by these cells' axial level of origin in the neural crest. All cranial parasympathetic neurons normally derive from cranial neural crest. Trunk neural crest cells give rise to sympathetic neurons, most of which are noradrenergic. To(More)
This study shows that explants of quail neural crest cultured in a medium containing serum and chick embryo extract give rise to large numbers of cells expressing immunoreactivity for substance P (SP), a neuropeptide found in sensory neurons. These cells arise from cycling precursors, but do not appear to divide after expressing SP. The SP-positive cells in(More)
Cranial and trunk neural crest cells produce different derivatives in vitro. Cranial neural crest cultures produce large numbers of cells expressing fibronectin (FN) and procollagen I (PCol I) immunoreactivities, two markers expressed by mesenchymal derivatives in vivo. Trunk neural crest cultures produce relatively few FN or PCol I immunoreactive cells,(More)
Different anteroposterior (AP) regions of the neural crest normally produce different cell types, both in vivo and in vitro. AP differences in neural crest cell fates appear to be specified in part by mechanisms that act prior to neural crest cell migration. We, therefore, examined the possibility that the fates of neural crest cells, like those of neural(More)