Gilles Lagniel

Learn More
Yap1 and Skn7 are two yeast transcriptional regulators that co-operate to activate thioredoxin (TRX2) and thioredoxin reductase (TRR1) in response to redox stress signals. Although they are both important for resistance to H2O2, only Yap1 is important for cadmium resistance, whereas Skn7 has a negative effect upon this response. The respective roles of Yap1(More)
Genome-wide studies have recently revealed the unexpected complexity of the genetic response to apparently simple physiological changes. Here, we show that when yeast cells are exposed to Cd(2+), most of the sulfur assimilated by the cells is converted into glutathione, a thiol-metabolite essential for detoxification. Cells adapt to this vital metabolite(More)
Cadmium is very toxic at low concentrations, but the basis for its toxicity is not clearly understood. We analyzed the proteomic response of yeast cells to acute cadmium stress and identified 54 induced and 43 repressed proteins. A striking result is the strong induction of 9 enzymes of the sulfur amino acid biosynthetic pathway. Accordingly, we observed(More)
The heat shock transcription factor Hsf1p and the stress-responsive transcription factors Msn2p and Msn4p are activated by heat shock in the yeast Saccharomyces cerevisiae. Their respective contributions to heat shock protein induction have been analysed by comparison of mutants and wild-type strains using [35S]-methionine labelling and two-dimensional gel(More)
The changes in gene expression underlying the yeast adaptive stress response to H2O2 were analyzed by comparative two-dimensional gel electrophoresis of total cell proteins. The synthesis of at least 115 proteins is stimulated by H2O2, whereas 52 other proteins are repressed by this treatment. We have identified 71 of the stimulated and 44 of the repressed(More)
Metabolomics is considered as an emerging new tool for functional proteomics in the identification of new protein function or in projects aiming at modeling whole cell metabolism. When combined with proteome studies, metabolite-profiling analyses revealed unanticipated insights into the yeast sulfur pathway. In response to cadmium, the observed(More)
Arsenic is ubiquitously present in nature, and various mechanisms have evolved enabling cells to evade toxicity and acquire tolerance. Herein, we explored how Saccharomyces cerevisiae (budding yeast) respond to trivalent arsenic (arsenite) by quantitative transcriptome, proteome, and sulfur metabolite profiling. Arsenite exposure affected transcription of(More)
Cadmium (Cd(2+)) is a very toxic metal that causes DNA damage, oxidative stress and apoptosis. Despite many studies, the cellular and molecular mechanisms underlying its high toxicity are not clearly understood. We show here that very low doses of Cd(2+) cause ER stress in Saccharomyces cerevisiae as evidenced by the induction of the unfolded protein(More)
Selenium can provoke contrasting effects on living organisms. It is an essential trace element, and low concentrations have beneficial effects, such as the reduction of the incidence of cancer. However, higher concentrations of selenium salts can be toxic and mutagenic. The bases for both toxicity and protection are not clearly understood. To provide(More)
The cellular response to hydrogen peroxide (H(2)O(2)) is characterized by a repression of growth-related processes and an enhanced expression of genes important for cell defense. In budding yeast, this response requires the activation of a set of transcriptional effectors. Some of them, such as the transcriptional activator Yap1, are specific to oxidative(More)