Learn More
The purpose of this study was to compare components of the rat and human auditory event-related potential (ERP) as generated in active oddball and passive single-stimulus tasks. The rats were trained to discriminate between target and standard stimuli in an oddball task, whereas the human subjects received instructions. Task effects on various ERP(More)
Four main theories on the pathophysiology of generalized absence seizures have been proposed. The "centrencephalic" theory, proposed in 1954, suggested that discharges originate from a deep-seated diffusely projecting subcortical pacemaker in the midline thalamus. This concept was refined in 1991 with the "thalamic clock" theory, implying that the reticular(More)
The WAG/Rij rat strain is characterized in its EEG by the manifestation of spike-wave discharges which resemble in their spontaneous appearance and pharmacological sensitivity the absence epilepsy observed in humans. In order to test the hypothesis whether cellular intrinsic membrane and/or synaptic network properties in the neocortex are modified in this(More)
In the first experiment, the relationship between the phase of the estrous cycle and the number of spontaneously occurring spike-wave discharges was investigated in WAG/Rij rats, a model for generalized absence epilepsy. The electroencephalogram (EEG) was continuously recorded for 96 h in eight rats chronically equipped with cortical EEG electrodes. A(More)
OBJECTIVE The study aims to investigate whether there is a higher excitability in the deep cortical layers of the peri-oral region of the somatosensory cortex as compared to other cortical regions in absence epileptic WAG/Rij rats and whether this is unique for this type of epileptic rats, as would be predicted by the cortical focus theory of absence(More)
Allopregnanolone is a known GABA(A) receptor agonist not previously given to men, or to women using oral contraceptives (OC). The effects of metabolites of sex hormones on the GABA(A) receptor are different between men and women. OC are known to change GABA(A) receptor subunit composition. These factors might play a role in the differential effect of(More)
The cortico-reticular theory of absence epilepsy explains the origin of the bilateral generalized spike-wave discharges (SWDs) characterizing absence seizures via a subcortical pacemaker that is responsible for both normal sleep spindles and pathological SWDs. This pacemaker is the reticular thalamic nucleus (RTN); it produces spontaneous oscillations(More)
Typical and atypical seizures of absence epilepsy are thought to be generated by a rhythmogenic interplay between the cortex and the thalamus. However, the question remains as to which other subcortical and extrathalamic structures are involved in the pathophysiology of typical and atypical absence epilepsy. Limbic structures are not thought to be involved(More)
Corticosteroids mediate seizure activity in different epilepsy models or epilepsies. However, for childhood absence epilepsy, a nonconvulsive type of epilepsy, direct evidence for corticosteroid seizure modulation is lacking. Thus, in the present study, we analysed the acute systemic effects of different doses of the corticosteroid corticosterone on seizure(More)
The classical cortico-reticular theory on absence epilepsy suggests that a hyperexcitable cortex is a precondition for the occurrence of absence seizures. In the present experiment seizure thresholds and characteristics of cortical and limbic epileptic afterdischarges (AD) were determined in a comparative cortical stimulation study in young and old adult(More)