Gilles Fischer

Learn More
Identifying the mechanisms of eukaryotic genome evolution by comparative genomics is often complicated by the multiplicity of events that have taken place throughout the history of individual lineages, leaving only distorted and superimposed traces in the genome of each living organism. The hemiascomycete yeasts, with their compact genomes, similar(More)
The propensity of segmental duplications (SDs) to promote genomic instability is of increasing interest since their involvement in numerous human genomic diseases and cancers was revealed. However, the mechanism(s) responsible for their appearance remain mostly speculative. Here, we show that in budding yeast, replication accidents, which are most likely(More)
Our knowledge of yeast genomes remains largely dominated by the extensive studies on Saccharomyces cerevisiae and the consequences of its ancestral duplication, leaving the evolution of the entire class of hemiascomycetes only partly explored. We concentrate here on five species of Saccharomycetaceae, a large subdivision of hemiascomycetes, that we call(More)
There is growing evidence that duplications have played a major role in eucaryotic genome evolution. Sequencing data revealed the presence of large duplicated regions in the genomes of many eucaryotic organisms, and comparative studies have suggested that duplication of large DNA segments has been a continuing process during evolution. However, little(More)
Rapid advances in DNA synthesis techniques have made it possible to engineer viruses, biochemical pathways and assemble bacterial genomes. Here, we report the synthesis of a functional 272,871-base pair designer eukaryotic chromosome, synIII, which is based on the 316,617-base pair native Saccharomyces cerevisiae chromosome III. Changes to synIII include(More)
We have screened the genome of Saccharomyces cerevisiae for fragments that confer a growth-retardation phenotype when overexpressed in a multicopy plasmid with a tetracycline-regulatable (Tet-off) promoter. We selected 714 such fragments with a mean size of 700 base-pairs out of around 84,000 clones tested. These include 493 in-frame open reading frame(More)
Hemiascomycete yeasts cover an evolutionary span comparable to that of the entire phylum of chordates. Since this group currently contains the largest number of complete genome sequences it presents unique opportunities to understand the evolution of genome organization in eukaryotes. We inferred rates of genome instability on all branches of a phylogenetic(More)
There is increasing evidence that DNA duplication is a common and ongoing process that plays a major role in molecular evolution of genomes and that a large fraction of the duplicated gene copies becomes non-functional by accumulation of deleterious mutations. In order to describe this phenomenon, we systematically searched the 6404 intergenic regions (IRs)(More)
Changes in gene order between the genomes of two related yeast species, Saccharomyces cerevisiae and Saccharomyces bayanus var. uvarum were studied. From the dataset of a previous low coverage sequencing of the S. bayanus var. uvarum genome, 35 different synteny breakpoints between neighboring genes and two cases of local gene inversion were characterized(More)
Segmental duplications (SDs) are a major element of eukaryotic genomes. Whereas their quantitative importance vary among lineages, SDs appear as a fundamental trait of the recent evolution of great-apes genomes. The chromosomal instability generated by these SDs has dramatic consequences both in generating a high level of polymorphisms among individuals and(More)