Gilles Desmadryl

Learn More
1. The relation between the response properties of semicircular canal afferents and their peripheral innervation patterns was studied by the use of intra-axonal labeling techniques. Fifty physiologically characterized units were injected with horseradish peroxidase (HRP) or Lucifer yellow CH (LY) and their processes were traced to the crista. The resting(More)
1. Extracellular recording techniques were used in the chinchilla to study the discharge properties of utricular afferents, including their discharge regularity, background discharge, and responses to both externally applied galvanic currents and centrifugal forces. 2. A normalized coefficient of variation (CV*), independent of discharge rate, was used to(More)
1. The relation between the discharge properties of utricular afferents and their peripheral innervation patterns was studied in the chinchilla by the use of intra-axonal labeling techniques. Fifty-three physiologically characterized units were injected with horseradish peroxidase (HRP) or lucifer yellow CH (LY) and their labeled processes were traced to(More)
The nature and electrophysiological properties of Ca(2+)-independent depolarization-activated potassium currents were investigated in vestibular primary neurons acutely isolated from postnatal mice using the whole cell configuration of the patch-clamp technique. Three types of currents were identified. The first current, sensitive to TEA (I(TEA)) and(More)
Sound-evoked compound action potential (CAP), which captures the synchronous activation of the auditory nerve fibers (ANFs), is commonly used to probe deafness in experimental and clinical settings. All ANFs are believed to contribute to CAP threshold and amplitude: low sound pressure levels activate the high-spontaneous rate (SR) fibers, and increasing(More)
Voltage-activated sodium currents (INa) in vestibular ganglion neurones acutely isolated from postnatal mice were investigated using the whole-cell configuration of the patch-clamp technique. Under recording conditions designed to allow the complete isolation of INa depolarizations from a holding potential of -80 mV revealed a fast inactivating inward(More)
The presence of a hyperpolarization-activated inward current (Ih) was investigated in mouse vestibular primary neurons using the whole-cell patch-clamp technique. In current-clamp configuration, injection of hyperpolarizing currents induced variations of membrane voltage with prominent time-dependent rectification increasing with current amplitudes. This(More)
Immunohistochemical investigations with calretinin, a neuronal calcium binding protein, were made in the vestibular end organs of five guinea pigs and one chinchilla. A specific pattern of immunoreactivity of afferent nerve fibers was found. Immunostaining was restricted to thick fibers innervating the apex of the cristae or the striola of the utricular(More)
We investigated the presence of voltage-gated calcium currents in vestibular neurons acutely isolated from postnatal mice vestibular ganglions using the whole-cell patch-clamp technique. The neuronal origin of the recorded cells was confirmed by immunohistochemical detection of neurofilaments and calretinin. High and low voltage-activated calcium currents(More)
1. The development of low voltage-activated (LVA) and high voltage-activated (HVA) calcium currents was studied in neurons acutely dissociated from mouse vestibular ganglia at embryonic stages (E)14, 15, 17 and birth using the whole-cell patch-clamp technique. 2. LVA current was present in almost all neurons tested at stages E14 to E17, although at birth(More)