Learn More
Magnetic resonance imaging (MRI) systems are widely used to gather noninvasively images of the interior of the human body. This paper suggests that an MRI system can be seen beyond being just a tool for imaging purpose but one that can propel and guide special microdevices in the human body to perform specific medical tasks. More specifically, an MRI system(More)
This paper reports the use of a magnetic resonance imaging (MRI) system to propel a ferromagnetic core. The concept was studied for future development of microdevices designed to perform minimally invasive interventions in remote sites accessible through the human cardiovascular system. A mathematical model is described taking into account various(More)
Radiochromic film is a dosimeter of choice in applications requiring high spatial resolution, two dimensional measurements, or minimum perturbation of the beam fluence. Since the measurement uncertainty in Gafchromic film dosimetry is thought to be significant compared to that of ionization chambers, a rigorous method to evaluate measurement uncertainties(More)
We have developed a method to study the statistical properties of the noise found in various medical images. The method is specifically designed for types of noise with uncorrelated fluctuations. Such signal fluctuations generally originate in the physical processes of imaging rather than in the tissue textures. Various types of noise (e.g., photon,(More)
An improved method for the combination of signals from array coils is presented as a way to reduce the influence of the noise floor on the estimation of diffusion tensor imaging (DTI) parameters. By an optimized combination of signals from the array channels and complex averaging of measurements, this method leads to a significant reduction of the noise(More)
A dedicated software architecture for a novel interventional method allowing the navigation of ferromagnetic endovascular devices using a standard real-time clinical MRI system is shown. Through a specially developed software environment integrating a tracking method and a real-time controller algorithm, a clinical 1.5T Siemens Avanto MRI system is adapted(More)
OBJECTIVE To evaluate the change in osteoarthritic (OA) knee cartilage volume over a two-year period with the use of magnetic resonance imaging (MRI) and to correlate the MRI changes with radiologic changes. METHODS Thirty-two patients with symptomatic knee OA underwent MRI of the knee at baseline and at 6, 12, 18, and 24 months. Loss of cartilage volumes(More)
The primary objective of this study was to develop a computer-aided method for the quantification of three-dimensional (3-D) cartilage changes over time in knees with osteoarthritis (OA). We introduced a local coordinate system (LCS) for the femoral and tibial cartilage boundaries that provides a standardized representation of cartilage geometry, thickness,(More)
The objective of this study was to further explore the cartilage volume changes in knee osteoarthritis (OA) over time using quantitative magnetic resonance imaging (qMRI). These were correlated with demographic, clinical, and radiological data to better identify the disease risk features. We selected 107 patients from a large trial (n = 1,232) evaluating(More)
A novel magnetic resonance (MR)-tracking method specifically developed to locate the ferromagnetic core of an untethered microdevice, microrobot, or nanorobot for navigation or closed-loop control purpose is described. The tracking method relies on the application of radio-frequency (RF) excitation signals tuned to the equipotential magnetic curves(More)