Learn More
The transcription factor Pax-5 occupies a central role in B cell differentiation and has been implicated in the development of B cell lymphoma. The transcriptional activation function of Pax-5 requires an intact N-terminal DNA-binding domain and is strongly influenced by the C-terminal transactivation domain. We report the identification and(More)
S100 inflammatory proteins have been previously shown to modulate breast cancer processes. More specifically, genome-wide transcriptome studies associate S100A8 and S100A9 members to breast cancer progression and malignancy. Findings have shown that S100A8 and S100A9 can signal and regulate cancer cell behavior through both extracellular and(More)
Although protein tyrosine phosphatase (PTP) inhibitors used in combination with other stimuli can induce interleukin 2 (IL-2) production in T cells, a direct implication of nuclear factor of activated T cells (NFAT) has not yet been demonstrated. This study reports that exposure of leukemic T cells and human peripheral blood mononuclear cells to(More)
Cancer statistics show significant diagnosis numbers amongst men and women worldwide, where breast cancer is by far the most frequently diagnosed cancer in women. Multiple mechanisms and molecules have been shown to occupy major roles in cancer progression and aggressivity. Recently, small non-coding RNA molecules, called micro-RNAs, have become the subject(More)
Human immunodeficiency virus type-1 (HIV-1) preferentially replicates in CD4-expressing T cells bearing a "memory" (CD45RO+) rather than a "naive" (CD45RA+/CD62L+) phenotype. Yet the basis for the higher susceptibility of these cells to HIV-1 infection remains unclear. Because the nature of the CD45 isoform itself can affect biochemical events in T cells,(More)
S100A8, S100A9, and S100A12, collectively known as myeloid-related proteins (MRPs), are highly expressed by the myeloid cell lineage and are found in the extracellular milieu during infections and inflammatory conditions. Recent data showed high levels of MRPs in the serum of HIV type 1 (HIV-1)-infected patients which correlated with disease progression and(More)
The Pax-5 oncogene encodes a potent transcription factor that plays a key role in B-cell development and cancerous processes. In normal B-lymphopoiesis, Pax-5 accomplishes a dual function by activating B-cell commitment genes while concomitantly repressing non-B-lineage genes. Given the pivotal importance of Pax-5-mediated processes in B-cell development,(More)
HIV-1 gene regulation is greatly dependent on the presence of the -104/-81 enhancer region which is regulated by both NF-kappaB and NFAT transcription factors. We have found that a greater induction in HIV-1 long terminal repeat-driven gene expression was observed upon PMA/ionomycin (Iono) stimulation of a CD45-deficient cell line (J45.01) in comparison to(More)
In neurodegenerative diseases associated with AIDS, reactive astrocytosis plays a central role in the neurotoxicity of the brain parenchyma. Whereas the HIV-1 nef gene is overexpressed during restricted HIV-1 infection of human astrocytes, our previous results have demonstrated that nef expressed in human U251MG glial cells activates the sphingomyelin(More)
The transcription factor Pax-5, is vital during B lymphocyte differentiation and is known to contribute to the oncogenesis of certain cancers. The Pax-5 locus generates multiple yet structurally related mRNA transcripts through the specific activation of alternative promoter regions and/or alternative splicing events which poses challenges in the study of(More)