#### Filter Results:

#### Publication Year

2001

2016

#### Publication Type

#### Co-author

#### Publication Venue

#### Key Phrases

#### Organism

Learn More

We discuss the influence of the ions dissolved in a liquid on the impedance spectroscopy of a cell. Our analysis is performed in the small-voltage regime, where the actual bulk density of ions is only slightly perturbed by the external electric field. In this framework, we show that the presence of the ions can be taken into account by a surface density of… (More)

The derivation of Warburg's impedance presented in several books and scientific papers is reconsidered. In the past it was obtained by assuming that the total electric current across the sample is just due to the diffusion, and that the external potential applied to the electrode is responsible for an increase of the bulk density of charge described by… (More)

The ionic distribution induced by an external field is investigated by means of the Poisson-Nernst-Planck model, by taking into account the non-blocking properties of the limiting electrodes. Three types of models proposed for the description of real electrodes are considered. The first two assume an ionic current on the electrodes proportional to the… (More)

Two phenomenological forms proposed to take into account the generation-recombination phenomenon of ions are investigated. The first form models the phenomenon as a chemical reaction, containing two coefficients describing the dissociation of neutral particles in ions, and the recombination of ions to give neutral particles. The second form is based on the… (More)

The effect of the generation-recombination phenomenon on the electrical impedance of an electrolytic cell is investigated. We show that this phenomenon could be responsible for the appearance of a plateau in the real part of the impedance of the cell. The possibility to observe the plateau, arising from the generation-recombination phenomenon, is discussed… (More)

The contribution of ions to the electrical impedance of an electrolytic cell limited by perfect blocking electrodes is determined by considering the role of the anomalous diffusion process and memory effects. Analytical solutions for fractional diffusion equations together with Poisson's equation relating the effective electric field to the net charge… (More)

The transient and equilibrium behaviors of an electrolytic cell containing two groups of ions submitted to an external voltage is considered. The analysis is performed analytically and numerically, considering the electrolytic solution as a dispersion of ions in an insulating liquid. According to our results, the dynamic of the system corresponds to a… (More)

The influence of the ions on the electrochemical impedance of a cell is calculated in the framework of a complete model in which the fractional drift-diffusion problem is analytically solved. The resulting distribution of the electric field inside the sample is determined by solving Poisson's equation. The theoretical model to determine the electrical… (More)

We show, by using a numerical analysis, that the dynamic toward equilibrium for an electrolytic cell subject to a step-like external electric field is a multirelaxation process when the diffusion coefficients of positive and negative ions are different. By assuming that the diffusion coefficient of positive ions is constant, we observe that the number of… (More)

We evaluate the relaxation times for an electrolytic cell subject to a step-like external voltage, in the case in which the mobility of negative ions is different from that of positive ions. The electrodes of the cell, in the shape of a slab, are supposed to be perfectly blocking. The theoretical analysis is performed by assuming that the applied voltage is… (More)