Learn More
The mechanism generally admitted for the bioactivation of the antithrombotic prodrug, clopidogrel, is its two-step enzymatic conversion into a biologically active thiol metabolite. The first step is a classical cytochrome P450 (P450)-dependent monooxygenation of its thiophene ring leading to 2-oxo-clopidogrel, a thiolactone metabolite. The second step was(More)
Metabolic cleavage of the CO-S bond of some thioesters RCOSR' with the formation of RCOOH requires a monooxygenase-dependent oxidative activation of this bond. The nature of the S-containing product(s) resulting from this cleavage remains unclear in most cases. This communication provides the first evidence for the formation of sulfenic acid intermediates(More)
Oxidation of 2-phenylthiophene (2PT) by rat liver microsomes, in the presence of NADPH and glutathione (GSH), led to three kinds of metabolites whose structures were established by 1H NMR and mass spectrometry. The first ones were 2PT-S-oxide dimers formed by Diels-Alder type dimerization of 2PT-S-oxide, while the second ones were GSH adducts derived from(More)
Metabolic activation of the tetrahydro-thienopyridine antithrombotic prodrug, prasugrel, involves two steps: an esterase-dependent hydrolysis of its acetate function leading to thiolactone 6 and a cytochrome P450 (P450)-catalyzed oxidative cleavage of this thiolactone. This article shows that this second step involves the intermediate formation of a(More)
The mechanism generally admitted for the bioactivation of the antithrombotic prodrug, prasugrel, 1c, is its two-step enzymatic conversion into a biologically active thiol metabolite. The first step is an esterase-catalyzed hydrolysis of its acetate function leading to a thiolactone metabolite 2c. The second step was described as a cytochrome P450(More)
BACKGROUND Cytochrome P450 2U1 (CYP2U1) has been identified from the human genome and is highly conserved in the living kingdom. In humans, it has been found to be predominantly expressed in the thymus and in the brain. CYP2U1 is considered as an "orphan" enzyme as few data are available on its physiological function(s) and active site topology. Its only(More)
The transcription factor NF-E2-related factor 2 (Nrf2) is a master regulator of a genetic program, termed the phase 2 response, that controls redox homeostasis and participates in multiple aspects of physiology and pathology. Nrf2 protein stability is regulated by two E3 ubiquitin ligase adaptors, Keap1 and β-TrCP, the latter of which was only recently(More)
MOTIVATION Scoring functions provided by the docking software are still a major limiting factor in virtual screening (VS) process to classify compounds. Score analysis of the docking is not able to find out all active compounds. This is due to a bad estimation of the ligand binding energies. Making the assumption that active compounds should have specific(More)
ATF4 plays a crucial role in the cellular response to stress and the F-box protein beta-TrCP, the receptor component of the SCF E3 ubiquitin ligase responsible for ATF4 degradation by the proteasome, binds to ATF4, and controls its stability. Association between the two proteins depends on ATF4 phosphorylation of serine residues 219 and 224 present in the(More)