Learn More
The seeding of cells onto biocompatible scaffolds is a determinant step in the attainment of functional properties of engineered tissues. Efficient, fast and spatially uniform cell seeding can improve the clinical potential of engineered tissue templates. One way to approach these cell seeding requirements is through bioreactor design. In the present study,(More)
Periodic recurrence of painful vaso-occlusive crisis is the defining feature of sickle cell disease. Among multiple pathologies associated with this disease, sickle red cell-endothelium interaction has been implicated as a potential initiating mechanism in vaso-occlusive events. This review focuses on various interrelated mechanisms involved in human sickle(More)
A microfabrication approach was utilized to create topographic analogs of intestinal crypts on a polymer substrate. It was hypothesized that biomimetic crypt-like micro-architecture may induce changes in small intestinal cell (i.e. Caco-2 cell) phenotype. A test pattern of micro-well features with similar dimensions (50, 100, and 500 microm diameter, 50(More)
The basement membrane of small intestinal epithelium possesses complex topography at multiple scales ranging from the mesoscale to nanoscale. Specifically, intestinal crypt-villus units are comprised of hundred-micron-scale well-like invaginations and finger-like projections; intestinal cell phenotype is related to location on this crypt-villus unit. A(More)
Phospholipid asymmetry is well maintained in erythrocyte (RBC) membranes with phosphatidylserine (PS) exclusively present in the inner leaflet. The appearance of PS on the surface of the cell can have major physiologic consequences, including increased cell-cell interactions. Because increased adherence of PS-exposing RBCs to endothelial cells (ECs) may be(More)
The abnormal adherence of sickle red blood cells (SS RBC) to vascular endothelium may play an important role in vasoocclusion in sickle cell anemia. Thrombospondin (TSP), unusually large molecular weight forms of von Willebrand factor, and laminin are known to enhance adhesion of SS RBC. Also, these endothelial proteins bind to sulfated glycolipids and this(More)
Recent in vivo studies suggest that adherent leukocytes bind RBCs and contribute to the microvascular pathology that characterizes sickle cell disease (SCD). A parallel-plate flow assay was used: to investigate the capture of RBCs by adherent neutrophils, monocytes, and T-lymphocytes; to examine whether RBC capture is elevated in patients with SCD; and to(More)
As the predominant cell type in blood, red blood cells (RBCs) and their biomechanical properties largely determine the rheological and hemodynamic behavior of blood in normal and disease states. In sickle cell disease (SCD), mechanically fragile, poorly deformable RBCs contribute to impaired blood flow and other pathophysiological aspects of the disease.(More)
Increased adhesive forces between sickle erythrocytes and endothelial cells (EC) have been hypothesized to play a role in the initiation of vasoocclusion in sickle cell anemia. Erythrocyte/human umbilical vein EC interactions were studied under controlled flow conditions for normal (AA), homozygous sickle cell (SS), sickle cell trait (AS), mechanically(More)
Controlled differentiation of mesenchymal stem cells (MSCs) into the chondrogenic lineage is crucial for in vitro generation of neocartilage, yet achieving it remains challenging. Traditional protocols for MSC differentiation using exogenous inductive molecules, such as transforming growth factor-β, fall short in meeting the needs of clinical applications(More)