Gilberto Siqueira

Learn More
Cellulose is the most abundant biomass material in nature. Extracted from natural fibers, its hierarchical and multi-level organization allows different kinds of nanoscaled cellulosic fillers—called cellulose nanocrystals or microfibrillated cellulose (MFC)—to be obtained. Recently, such cellulose nanoparticles have been the focus of an exponentially(More)
In the present work, cellulose nanowhiskers (CNWs), extracted from ramie fibers, were incorporated in polylactide (PLA)-based composites. Prior to the blending, PLA chains were chemically grafted on the surface of CNW to enhance the compatibilization between CNW and the hydrophobic polyester matrix. Ring-opening polymerization of l-lactide was initiated(More)
In the present work, nanowhiskers and microfibrillated cellulose (MFC) both extracted from sisal were used to reinforce polycaprolactone (PCL). We report the influence of the nanoparticle's nature on the mechanical and thermal properties of the ensuing nanocomposites. The surface of both the nanoparticles was chemically modified to improve their(More)
Cellulose nanocrystals (or whiskers) and microfibrillated cellulose (MFC) were successfully obtained from sisal fibers and modified with n-octadecyl isocyanate (C(18)H(37)NCO) using two different methods with one innovation that consists of an in situ solvent exchange procedure. The surface chemical modification was characterized by elemental analysis, as(More)
Controlled and efficient immobilization of specific biomolecules is a key technology to introduce new, favorable functions to materials suitable for biomedical applications. Here, we describe an innovative and efficient, two-step methodology for the stable immobilization of various biomolecules, including small peptides and enzymes onto TEMPO oxidized(More)
A new synthesis of bis(acyl)phosphane oxide (BAPO) photoinitiators was developed which can be used to functionalize cellulose nanocrystal surfaces for polymer grafting. Hybrid materials with excellent graft yields can be rapidly obtained under mild and acid-free conditions.
Cellulose nanocrystals have been prepared by acid hydrolysis of Luffa cylindrica fibers. The acid-resistant residue consisted of rod-like nanoparticles with an average length an diameter around 242 and 5.2nm, respectively (aspect ratio around 46). These cellulose nanocrystals have been used as a reinforcing phase for the processing of bio-nanocomposites(More)
Cellulose nanocrystals (CNCs) with different charge densities were utilized to examine the role of electrostatic interactions on surface-initiated atom transfer radical polymerization (SI-ATRP) in aqueous media. To this end, growth of hydrophilic uncharged poly(N,N-dimethylacrylamide) (PDMAM) brushes was monitored by electrophoresis, (1)H NMR spectroscopy,(More)
  • 1