Gilbert de Murcia

Learn More
The DNA damage dependence of poly(ADP-ribose) polymerase-2 (PARP-2) activity is suggestive of its implication in genome surveillance and protection. Here we show that the PARP-2 gene, mainly expressed in actively dividing tissues follows, but to a smaller extent, that of PARP-1 during mouse development. We found that PARP-2 and PARP-1 homo- and(More)
Poly(ADP-ribosylation) is a post-translational modification of nuclear proteins in response to DNA damage that activates the base excision repair machinery. Poly(ADP-ribose) polymerase which we will now call PARP-1, has been the only known enzyme of this type for over 30 years. Here, we describe a cDNA encoding a 62-kDa protein that shares considerable(More)
Poly(ADP-ribose) polymerase (PARP; EC 2.4.2.30) is a zinc-finger DNA-binding protein that detects and signals DNA strand breaks generated directly or indirectly by genotoxic agents. In response to these breaks, the immediate poly(ADP-ribosyl)ation of nuclear proteins involved in chromatin architecture and DNA metabolism converts DNA damage into(More)
Poly(ADP-ribose) polymerase [PARP; NAD+ ADP-ribosyltransferase; NAD+: poly(adenosine-diphosphate-D-ribosyl)-acceptor ADP-D-ribosyltransferase, EC 2.4.2.30] is a zinc-finger DNA-binding protein that detects specifically DNA strand breaks generated by genotoxic agents. To determine its biological function, we have inactivated both alleles by gene targeting in(More)
Poly(ADP-ribosyl)ation is an immediate DNA-damage-dependent post-translational modification of histones and other nuclear proteins that contributes to the survival of injured proliferating cells. Poly(ADP-ribose) polymerases (PARPs) now constitute a large family of 18 proteins, encoded by different genes and displaying a conserved catalytic domain in which(More)
The DNA damage-dependent poly(ADP-ribose) polymerases, PARP-1 and PARP-2, homo- and heterodimerize and are both involved in the base excision repair (BER) pathway. Here, we report that mice carrying a targeted disruption of the PARP-2 gene are sensitive to ionizing radiation. Following alkylating agent treatment, parp-2(-/-)-derived mouse embryonic(More)
We show that PARP-1 is indispensable to retinoic acid receptor (RAR)-mediated transcription from the RARbeta2 promoter in a highly purified, reconstituted transcription system and that RA-inducible expression of all RARbeta isoforms is abrogated in PARP-1(-/-) cells in vivo. Importantly, PARP-1 activity was independent of its catalytic domain. PARP-1(More)
Poly (ADP-ribose) polymerase-1 is a nuclear DNA-binding protein that participates in the DNA base excision repair pathway in response to genotoxic stress in mammalian cells. Here we show that PARP-1-deficient cells are defective in NF-kappaB-dependent transcription activation, but not in its nuclear translocation, in response to TNF-alpha. Treating mice(More)
Poly(ADP-ribose) polymerase (PARP) participates in the intricate network of systems developed by the eukaryotic cell to cope with the numerous environmental and endogenous genotoxic agents. Cloning of the PARP gene has allowed the development of genetic and molecular approaches to elucidate the structure and function of this abundant and highly conserved(More)
To investigate the physiological function of poly(ADP-ribose) polymerase (PARP), we used a gene targeting strategy to generate mice lacking a functional PARP gene. These PARP -/- mice were exquisitely sensitive to the monofunctional-alkylating agent N -methyl- N -nitrosourea (MNU) and gamma-irradiation. In this report, we have analysed the cause of this(More)