Gilbert G. Privé

Learn More
The BTB domain (also known as the POZ domain) is a versatile protein-protein interaction motif that participates in a wide range of cellular functions, including transcriptional regulation, cytoskeleton dynamics, ion channel assembly and gating, and targeting proteins for ubiquitination. Several BTB domain structures have been experimentally determined,(More)
Classical neurotransmitters are transported into synaptic vesicles so that their release can be regulated by neural activity. In addition, the vesicular transport of biogenic amines modulates susceptibility to N-methyl-4-phenylpyridinium (MPP+), the active metabolite of the neurotoxin N-methyl-1,2,3,6-tetrahydropyridine that produces a model of Parkinson's(More)
Glioblastoma is one of the most challenging forms of cancer to treat. Here we describe a computational platform that integrates the analysis of copy number variations and somatic mutations and unravels the landscape of in-frame gene fusions in glioblastoma. We found mutations with loss of heterozygosity in LZTR1, encoding an adaptor of CUL3-containing E3(More)
The BTB domain (also known as the POZ domain) is an evolutionarily conserved protein-protein interaction motif found at the N terminus of 5-10% of C2H2-type zinc-finger transcription factors, as well as in some actin-associated proteins bearing the kelch motif. Many BTB proteins are transcriptional regulators that mediate gene expression through the control(More)
BCL6 encodes a transcription factor that represses genes necessary for the terminal differentiation of lymphocytes within germinal centers, and the misregulated expression of this factor is strongly implicated in several types of B cell lymphoma. The homodimeric BTB domain of BCL6 (also known as the POZ domain) is required for the repression activity of the(More)
The E3 ligases recruit substrate proteins for targeted ubiquitylation. Recent insights into the mechanisms of ubiquitylation demonstrate that E3 ligases can possess active regulatory properties beyond those of a simple assembly scaffold. Here, we describe the dimeric structure of the E3 ligase adaptor protein SPOP (speckle-type POZ protein) in complex with(More)
Nramp (natural resistance-associated macrophage protein) is a newly identified family of integral membrane proteins whose biochemical function is unknown. We report on the identification of Nramp homologs from the fly Drosophila melanogaster, the plant Oryza sativa, and the yeast Saccharomyces cerevisiae. Optimal alignment of protein sequences required(More)
The use of detergents for the structural study of membrane proteins is discussed with an emphasis on practical issues relating to membrane solubilization, protein aggregation, detergent purity and detergent quantitation. Detergents are useful reagents as mimics of lipid bilayers because of their self-assembling properties, but as a result, they have complex(More)
The ability of enzymes to distinguish between fatty acyl groups can involve molecular measuring devices termed hydrocarbon rulers, but the molecular basis for acyl-chain recognition in any membrane-bound enzyme remains to be defined. PagP is an outer membrane acyltransferase that helps pathogenic bacteria to evade the host immune response by transferring a(More)
The Drosophila bric à brac protein and the transcriptional regulators encoded by tramtrack and Broad-Complex contain a highly conserved domain of approximately 115 amino acids, which we have called the BTB domain. We have identified six additional Drosophila genes that encode this domain. Five of these genes are developmentally regulated, and one of them(More)