Gilbert Eriani

Learn More
The aminoacyl-transfer RNA synthetases (aaRS) catalyse the attachment of an amino acid to its cognate transfer RNA molecule in a highly specific two-step reaction. These proteins differ widely in size and oligomeric state, and have limited sequence homology. Out of the 18 known aaRS, only 9 referred to as class I synthetases (GlnRS, TyrRS, MetRS, GluRS,(More)
The crystal structures of the various complexes formed by yeast aspartyl-tRNA synthetase (AspRS) and its substrates provide snapshots of the active site corresponding to different steps of the aminoacylation reaction. Native crystals of the binary complex tRNA-AspRS were soaked in solutions containing the two other substrates, ATP (or its analog AMPPcP) and(More)
The crystal structure of arginyl-tRNA synthetase (ArgRS) from Saccharomyces cerevisiae, a class I aminoacyl-tRNA synthetase (aaRS), with L-arginine bound to the active site has been solved at 2.75 A resolution and refined to a crystallographic R-factor of 19.7%. ArgRS is composed predominantly of alpha-helices and can be divided into five domains, including(More)
Cytoplasmic aspartyl-tRNA synthetase (AspRS; EC from yeast is, as are most class II synthetases, an alpha 2 dimer. The only invariant amino acid in signature motif 1 of this class is Pro-273; this residue is located at the dimer interface. To understand the role of Pro-273 in the conserved dimeric configuration, we tested the effect of a(More)
Histone proteins are essential components of eukaryotic chromosomes. In metazoans, they are produced from the so-called replication-dependent histone genes. The biogenesis of histones is tightly coupled to DNA replication in a stoichiometric manner because an excess of histones is highly toxic for the cell. Therefore, a strict cell cycle-regulation of(More)
In 1996, a new method, termed the yeast three-hybrid system, dedicated to selection of RNA binding proteins using a hybrid RNA molecule as bait was described. In this minireview, we summarize the results that have been obtained using this method. Indeed, approximately 20 unknown proteins have been characterized so far. The three-hybrid strategy has also(More)
The editing reactions catalyzed by aminoacyl-tRNA synthetases are critical for the faithful protein synthesis by correcting misactivated amino acids and misaminoacylated tRNAs. We report that the isolated editing domain of leucyl-tRNA synthetase from the deep-rooted bacterium Aquifex aeolicus (alphabeta-LeuRS) catalyzes the hydrolytic editing of both(More)
A large insertion domain called CP1 (connective peptide 1) present in class Ia aminoacyl-tRNA synthetases is responsible for post-transfer editing. LeuRS (leucyl-tRNA synthetase) from Aquifex aeolicus and Giardia lamblia possess unique 20 and 59 amino acid insertions respectively within the CP1 that are crucial for editing activity. Crystal structures of(More)
The gene coding for E. coli cysteinyl-tRNA synthetase (cysS) was isolated by complementation of a strain deficient in cysteinyl-tRNA synthetase activity at high temperature (43 degrees C). Sequencing of a 2.1 kbp DNA fragment revealed an open reading frame of 1383 bp coding for a protein of 461 amino acid residues with a Mr of 52,280, a value in close(More)
Gene cloning, overproduction and an efficient purification protocol of yeast arginyl-tRNA synthetase (ArgRS) as well as the interaction patterns of this protein with cognate tRNAArgand non-cognate tRNAAspare described. This work was motivated by the fact that the in vitro transcript of tRNAAspis of dual aminoacylation specificity and is not only(More)