Learn More
This paper proposes a general framework for reconstructing sparse images from undersampled (squared)magnitude data corrupted with outliers and noise. This phase retrieval method uses a layered approach, combining repeated minimization of a convex majorizer (surrogate for a nonconvex objective function), and iterative optimization of that majorizer using a(More)
We propose a reconstruction method for the phase retrieval problem prevalent in optics, crystallography, and other imaging applications. Our approach uses signal sparsity to provide robust reconstruction, even in the presence of outliers. Our method is multi-layered, involving multiple random initial conditions, convex majorization, variable splitting, and(More)
  • 1