Learn More
We have recently demonstrated using fMRI that a region within the human lateral occipital complex (LOC) is activated by objects when either seen or touched. We term this cortical region LOtv for the lateral occipital tactile-visual region. We report here that LOtv voxels tend to be located in sub-regions of LOC that show preference for graspable visual(More)
Learning is mediated by experience-dependent plasticity in neuronal circuits. Activity in neuronal circuits is tightly regulated by different subtypes of inhibitory interneurons, yet their role in learning is poorly understood. Using a combination of in vivo single-unit recordings and optogenetic manipulations, we show that in the mouse basolateral(More)
Neurones are noisy elements. Noise arises from both intrinsic and extrinsic sources, and manifests itself as fluctuations in the membrane potential. These fluctuations limit the accuracy of a neurone's output but have also been suggested to play a computational role. We present a detailed study of the amplitude and spectrum of voltage noise recorded at the(More)
A central goal of modern neuroscience is to obtain a mechanistic understanding of higher brain functions under healthy and diseased conditions. Addressing this challenge requires rigorous experimental and theoretical analysis of neuronal circuits. Recent advances in optogenetics, high-resolution in vivo imaging, and reconstructions of synaptic wiring(More)
The olivo-cerebellar system has been implicated in temporal coordination of task components. Here, we propose a novel model that enables the olivo-cerebellar system to function as a generator of temporal patterns. These patterns could be used for timing of motor, sensory and cognitive tasks. The proposed mechanism for the generation of these patterns is(More)
Complex movements require accurate temporal coordination between their components. The temporal acuity of such coordination has been attributed to an internal clock signal provided by inferior olivary oscillations. However, a clock signal can produce only time intervals that are multiples of the cycle duration. Because olivary oscillations are in the range(More)
The cerebellum has been implicated as a major player in producing temporal acuity. Theories of cerebellar timing typically emphasize the role of the cerebellar cortex while overlooking the role of the deep cerebellar nuclei (DCN) that provide the sole output of the cerebellum. Here we review anatomical and electrophysiological studies to shed light on the(More)
Membrane ion channels and synapses are among the most important computational elements of nerve cells. Both have stochastic components that are reflected in random fluctuations of the membrane potential. We measured the spectral characteristics of membrane voltage noise in vitro at the soma and the apical dendrite of layer 4/5 (L4/5) neocortical neurons of(More)
The study of spatial processing in the auditory system usually requires complex experimental setups, using arrays of speakers or speakers mounted on moving arms. These devices, while allowing precision in the presentation of the spatial attributes of sound, are complex, expensive and limited. Alternative approaches rely on virtual space sound delivery. In(More)
  • Gilad Jacobson, Idan Christof Segev, Koch, Yasmin Caltech, Oz, Anat +15 others
  • 2009
Ithaca When you set out on your journey to Ithaca, pray that the road is long, full of adventure, full of knowledge. The Lestrygonians and the Cyclops, the angry Poseidon-do not fear them: You will never find such as these on your path, if your thoughts remain lofty, if a fine emotion touches your spirit and your body. The Lestrygonians and the Cyclops, the(More)