Giel G van Dooren

Learn More
The apicoplast and mitochondrion of the malaria parasite Plasmodium falciparum are important intracellular organelles and targets of several anti-malarial drugs. In recent years, our group and others have begun to piece together the metabolic pathways of these organelles, with a view to understanding their functions and identifying further anti-malarial(More)
A neural network approach for the prediction of mitochondrial transit peptides (mTPs) from the malaria-causing parasite Plasmodium falciparum is presented. Nuclear-encoded mitochondrial protein precursors of P. falciparum were analyzed by statistical methods, principal component analysis and supervised neural networks, and were compared to those of other(More)
Most apicomplexan parasites harbor a relict chloroplast, the apicoplast, that is critical for their survival. Whereas the apicoplast maintains a small genome, the bulk of its proteins are nuclear encoded and imported into the organelle. Several models have been proposed to explain how proteins might cross the four membranes that surround the apicoplast;(More)
The phylum Apicomplexa comprises a group of obligate intracellular parasites of broad medical and agricultural significance, including Toxoplasma gondii and the malaria-causing Plasmodium spp. Key to their parasitic lifestyle is the need to egress from an infected cell, actively move through tissue, and reinvade another cell, thus perpetuating infection.(More)
Memory T cells circulate through lymph nodes where they are poised to respond rapidly upon re-exposure to a pathogen; however, the dynamics of memory T cell, antigen-presenting cell, and pathogen interactions during recall responses are largely unknown. We used a mouse model of infection with the intracellular protozoan parasite, Toxoplasma gondii, in(More)
The mitochondrion of Plasmodium species is a validated drug target. However, very little is known about the functions of this organelle. In this review, we utilize data available from the Plasmodium falciparum genome sequencing project to piece together putative metabolic pathways that occur in the parasite, comparing this with the existing biochemical and(More)
Secondary endosymbiosis describes the origin of plastids in several major algal groups such as dinoflagellates, euglenoids, heterokonts, haptophytes, cryptomonads, chlorarachniophytes and parasites such as apicomplexa. An integral part of secondary endosymbiosis has been the transfer of genes for plastid proteins from the endosymbiont to the host nucleus.(More)
Apicomplexans are pathogens responsible for malaria, toxoplasmosis, and crytposporidiosis in humans, and a wide range of livestock diseases. These unicellular eukaryotes are stealthy invaders, sheltering from the immune response in the cells of their hosts, while at the same time tapping into these cells as source of nutrients. The complexity and beauty of(More)
Although the signals that control neutrophil migration from the blood to sites of infection have been well characterized, little is known about their migration patterns within lymph nodes or the strategies that neutrophils use to find their local sites of action. To address these questions, we used two-photon scanning-laser microscopy to examine neutrophil(More)