Learn More
Autosomal-recessive congenital sodium diarrhea (CSD) is characterized by perinatal onset of a persistent watery diarrhea with nonproportionally high fecal sodium excretion. Defective jejunal brush-border Na(+)/H(+) exchange has been reported in three sporadic patients, but the molecular basis of the disease has not been elucidated. We reviewed data from a(More)
Osteogenesis imperfecta (OI) is a rare hereditary bone fragility disorder, caused by collagen I mutations in 90% of cases. There are no comprehensive genotype-phenotype studies on >100 families outside North America, and no population-based studies determining the genetic epidemiology of OI. Here, detailed clinical phenotypes were recorded, and the COL1A1(More)
Autosomal dominant brachyolmia (Type 3, OMIM #113500) belongs to a group of skeletal dysplasias caused by mutations in the transient receptor potential cation channel, subfamily V, member 4 (TRPV4) gene, encoding a Ca++-permeable, non-selective cation channel. The disorder is characterized by disproportionate short stature with short trunk, scoliosis and(More)
Brachyolmia (BO) is a heterogeneous group of skeletal dysplasias with skeletal changes limited to the spine or with minimal extraspinal features. BO is currently classified into types 1, 2, 3, and 4. BO types 1 and 4 are autosomal recessive conditions caused by PAPSS2 mutations, which may be merged together as an autosomal recessive BO (AR-BO). The clinical(More)
Mutations in the Sonic hedgehog limb enhancer, the zone of polarizing activity regulatory sequence (ZRS, located within the gene LMBR1), commonly called the ZRS), cause limb malformations. In humans, three classes of mutations have been proposed based on the limb phenotype; single base changes throughout the region cause preaxial polydactyly (PPD), single(More)
BACKGROUND Mutations in TRPV4, a gene that encodes a Ca(2+) permeable non-selective cation channel, have recently been found in a spectrum of skeletal dysplasias that includes brachyolmia, spondylometaphyseal dysplasia, Kozlowski type (SMDK) and metatropic dysplasia (MD). Only a total of seven missense mutations were detected, however. The full spectrum of(More)
Estrogens affect longitudinal bone growth through their action on endochondral bone formation. Two estrogen receptors are known, the classical estrogen receptor-alpha (ER alpha), newly demonstrated in human growth plate cartilage, and a recently cloned estrogen receptor-beta (ER beta). The present study aimed to localize a possible expression of ER beta(More)
Dyschondrosteosis (DCO) and hypochondroplasia (HCH) are common skeletal dysplasias characterized by disproportionate short stature. The diagnosis of these conditions might be difficult to establish especially in early childhood. Point mutations and deletions of the short stature homeobox containing gene (SHOX) are detected in DCO and idiopathic short(More)
UNLABELLED Hypochondroplasia is characterized by a disproportionate short stature with rhizomelic shortening of the limbs. Amino acid substitutions Asn540Lys, Asn540Thr and Ile538Val in the fibroblast growth factor receptor 3 (FGFR3) are considered to cause hypochondroplasia. In this study we examined the FGFR3 gene for the previously described(More)
Meningiomas are the most common intracranial neoplasias, representing a clinically and histopathologically heterogeneous group of tumors. The neurofibromatosis type 2 (NF2) tumor suppressor is the only gene known to be frequently involved in early development of meningiomas. The objective of this study was to identify genetic and/or epigenetic factors(More)