Learn More
  • Christoph Thomas, Ignacio Moraga, Doron Levin, Peter O. Krutzik, Yulia Podoplelova, Angelica Trejo +8 others
  • 2011
Type I Interferons (IFNs) are important cytokines for innate immunity against viruses and cancer. Sixteen human type I IFN variants signal through the same cell-surface receptors, IFNAR1 and IFNAR2, yet they can evoke markedly different physiological effects. The crystal structures of two human type I IFN ternary signaling complexes containing IFNα2 and(More)
The CAPRI (Critical Assessment of Predicted Interactions) and CASP (Critical Assessment of protein Structure Prediction) experiments have demonstrated the power of community-wide tests of methodology in assessing the current state of the art and spurring progress in the very challenging areas of protein docking and structure prediction. We sought to bring(More)
The development of bioinformatic tools by individual labs results in the abundance of parallel programs for the same task. For example, identification of binding site regions between interacting proteins is done using: ProMate, WHISCY, PPI-Pred, PINUP and others. All servers first identify unique properties of binding sites and then incorporate them into a(More)
The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Abstract Interactions between macromolecules in general, and between proteins in particular, are essential for any life process. Examples include transfer of information, inhibition or activation of function, molecular recognition as in the(More)
The 3D structures of macromolecules are difficult to grasp and also to communicate. By their nature, movies or animations are particularly useful for highlighting key features by offering a 'guided tour' of structures and conformation changes. However, high-quality movies are rarely seen because they are currently difficult and time consuming to make. By(More)
UNLABELLED Protein structures can be viewed as networks of contacts (edges) between amino-acid residues (nodes). Here we dissect proteins into sub-graphs consisting of six nodes and their corresponding edges, with an edge being either a backbone hydrogen bond (H-bond) or a covalent interaction. Six thousand three hundred and twenty-two such sub-graphs were(More)
Protein-protein interactions networks has come to be a buzzword associated with nets containing edges that represent a pair of interacting proteins (e.g. hormone-receptor, enzyme-inhibitor, antigen-antibody, and a subset of multichain biological machines). Yet, each such interaction composes its own unique network, in which vertices represent amino acid(More)
The three-dimensional structures of proteins are stabilized by the interactions between amino acid residues. Here we report a method where four distances are calculated between any two side chains to provide an exact spatial definition of their bonds. The data were binned into a four-dimensional grid and compared to a random model, from which the preference(More)
BACKGROUND Accurate evaluation and modelling of residue-residue interactions within and between proteins is a key aspect of computational structure prediction including homology modelling, protein-protein docking, refinement of low-resolution structures, and computational protein design. RESULTS Here we introduce a method for accurate protein structure(More)
MOTIVATION Secondary structures are key descriptors of a protein fold and its topology. In recent years, they facilitated intensive computational tasks for finding structural homologues, fold prediction and protein design. Their popularity stems from an appealing regularity in patterns of geometry and chemistry. However, the definition of secondary(More)