Joseph H Szurszewski8
Peter R Strege6
8Joseph H Szurszewski
6Peter R Strege
Learn More
The voltage-sensitive sodium channel Na(v)1.5 (encoded by SCN5A) is expressed in electromechanical organs and is mechanosensitive. This study aimed to determine the mechanosensitive transitions of Na(v)1.5 at the molecular level. Na(v)1.5 was expressed in HEK 293 cells and mechanosensitivity was studied in cell-attached patches. Patch pressure up to -50(More)
BACKGROUND The pathophysiological basis of diabetic gastroparesis is poorly understood, in large part due to the almost complete lack of data on neuropathological and molecular changes in the stomachs of patients. Experimental models indicate various lesions affecting the vagus, muscle, enteric neurons, interstitial cells of Cajal (ICC) or other cellular(More)
Populations of interstitial cells of Cajal (ICC) are altered in several gastrointestinal neuromuscular disorders. ICC are identified typically by ultrastructure and expression of Kit (CD117), a protein that is also expressed on mast cells. No other molecular marker currently exists to independently identify ICC. The expression of ANO1 (DOG1, TMEM16A), a(More)
Interstitial cells of Cajal (ICC) generate the electrical slow wave required for normal gastrointestinal motility. The ionic conductances expressed in human intestinal ICC are unknown. The aim of this study was to determine expression of a Na+ current in human intestinal ICC and to determine the effects of the Na+ current on the slow wave. Visually(More)
Interstitial cells of Cajal (ICC) are essential for the normal function of the digestive tract, both as pacemakers and as intermediates between nerves and smooth muscle cells. To perform their functions ICC must be electrically coupled both among themselves and to the muscle layers. This review focuses on the role gap junctions play in coupling ICC to ICC,(More)
The ultrastructural changes in diabetic and idiopathic gastroparesis are not well studied and it is not known whether there are different defects in the two disorders. As part of the Gastroparesis Clinical Research Consortium, full thickness gastric body biopsies from 20 diabetic and 20 idiopathic gastroparetics were studied by light microscopy.(More)
Interstitial cells of Cajal (ICC) generate the electrical slow wave. The ionic conductances that contribute to the slow wave appear to vary among species. In humans, a tetrodotoxin-resistant Na+ current (Na(V)1.5) encoded by SCN5A contributes to the rising phase of the slow wave, whereas T-type Ca2+ currents have been reported from cultured mouse intestine(More)
Voltage-gated sodium selective ion channel Na(V)1.5 is expressed in the heart and the gastrointestinal tract, which are mechanically active organs. Na(V)1.5 is mechanosensitive at stimuli that gate other mechanosensitive ion channels. Local anesthetic and antiarrhythmic drugs act upon Na(V)1.5 to modulate activity by multiple mechanisms. This study examined(More)
Antispasmodics are used clinically to treat a variety of gastrointestinal disorders by inhibition of smooth muscle contraction. The main pathway for smooth muscle Ca(2+) entry is through L-type channels; however, there is increasing evidence that T-type Ca(2+) channels also play a role in regulating contractility. Otilonium bromide, an antispasmodic, has(More)
The aims of this study were to quantify the change in resting membrane potential (RMP) across the thickness of the circular muscle layer in the mouse and human small intestine and to determine whether the gradient in RMP is dependent on the endogenous production of carbon monoxide (CO). Conventional sharp glass microelectrodes were used to record the RMPs(More)