Learn More
BACKGROUND Pyrimidine-preferring N-ribohydrolases (CU-NHs) are a class of Ca2+-dependent enzymes that catalyze the hydrolytic cleavage of the N-glycosidic bond in pyrimidine nucleosides. With the exception of few selected organisms, their physiological relevance in prokaryotes and eukaryotes is yet under investigation. RESULTS Here, we report the first(More)
The endocannabinoid anandamide is removed from the synaptic space by a selective transport system, expressed in neurons and astrocytes, that remains molecularly uncharacterized. Here we describe a partly cytosolic variant of the intracellular anandamide-degrading enzyme fatty acid amide hydrolase-1 (FAAH-1), termed FAAH-like anandamide transporter (FLAT),(More)
Our previous studies revealed that L-type voltage-dependent Ca(2+) channels (Cav1.2 L-VDCCs) are modulated by the neural extracellular matrix backbone, polyanionic glycan hyaluronic acid. Here we used isothermal titration calorimetry and screened a set of peptides derived from the extracellular domains of Cav1.2α1 to identify putative binding sites between(More)
Results of the accurate crystal structure determination of NO(2)Cbl.2LiCl (1), NO(2)Cbl.NaCl (2), NCSCbl (3) and NCSeCbl (4), based on synchrotron diffraction data collected at 100 K, are described. The nitro group in (1) was found to be disordered with two orientations that differ by a rotation of approximately 60 degrees about the Co-NO(2) bond, whereas(More)
  • 1