Learn More
The existence of nontrivial solutions of quasilinear elliptic equations at critical growth is proved. The solutions are obtained by variational methods: as the corresponding functional is nonsmooth, the analysis of Palais-Smale sequences requires suitable generalizations of the techniques involved in the study of the corresponding semilinear problem with(More)
We study a semilinear fourth order elliptic problem with exponential nonlinearity. Motivated by a question raised in [Li], we partially extend known results for the corresponding second order problem. Several new difficulties arise and many problems still remain to be solved. We list the ones we feel particularly interesting in the final section.
All attempts of aeroelastic explanations for the torsional instability of suspension bridges have been somehow criticised and none of them is unanimously accepted by the scientific community. We suggest a new nonlinear model for a suspension bridge and we perform numerical experiments with the parameters corresponding to the collapsed Tacoma Narrows Bridge.(More)
The coupling between cardiac mechanics and electric signaling is addressed in a nonstandard framework in which the electrical potential dictates the active strain (not stress) of the muscle. The physiological and mathematical motivations leading us to this choice are illustrated. The propagation of the electric signal is assumed to be governed by the(More)
We develop some computer-assisted techniques for the analysis of stationary solutions of dissipative partial differential equations, their stability, as well as bifurcation diagrams. As a case study, these methods are applied to the Kuramoto-Sivashinski equation. This equation has been investigted extensively, and its bifurcation diagram is well known from(More)
We investigate entire radial solutions of the semilinear biharmonic equation ∆ 2 u = λ exp(u) in R n , n ≥ 5, λ > 0 being a parameter. We show that singular radial solutions of the corresponding Dirichlet problem in the unit ball cannot be extended as solutions of the equation to the whole of R n. In particular, they cannot be expanded as power series in(More)
Existence results available for the semilinear Brezis-Nirenberg eigenvalue problem suggest that the compactness problems for the corresponding action functionals are more serious in small dimensions. In space dimension n = 3, one can even prove nonexistence of positive solutions in a certain range of the eigenvalue parameter. In the present paper we study a(More)
We consider the equation −∆u = wu 3 on a square domain in R 2 , with Dirichlet boundary conditions, where w is a given positive function that is invariant under all (Euclidean) symmetries of the square. This equation is shown to have a solution u, with Morse index 2, that is neither symmetric nor antisymmetric with respect to any nontrivial symmetry of the(More)
We develop a computer-assisted technique for constructing and analyzing orbits of dissipative evolution equations. As a case study, the methods are applied to the Kuramoto–Sivashinski equation, for which we prove the existence of a hyperbolic periodic orbit. 1. Introduction. In this paper we consider the problem of investigating the flow of dis-sipative(More)