Gianluca Tosini

Learn More
In mammals, the melanopsin gene (Opn4) encodes a sensory photopigment that underpins newly discovered inner retinal photoreceptors. Since its first discovery in Xenopus laevis and subsequent description in humans and mice, melanopsin genes have been described in all vertebrate classes. Until now, all of these sequences have been considered representatives(More)
The avian retina and pineal gland contain autonomous circadian oscillators and photo-entrainment pathways, but the photopigment(s) that mediate entrainment have not been definitively identified. Melanopsin (Opn4) is a novel opsin involved in entrainment of circadian rhythms in mammals. Here, we report the cDNA cloning of chicken melanopsin and show its(More)
Circadian clocks are self-sustaining genetically based molecular machines that impose approximately 24h rhythmicity on physiology and behavior that synchronize these functions with the solar day-night cycle. Circadian clocks in the vertebrate retina optimize retinal function by driving rhythms in gene expression, photoreceptor outer segment membrane(More)
Complete congenital stationary night blindness (cCSNB) is a clinically and genetically heterogeneous group of retinal disorders characterized by nonprogressive impairment of night vision, absence of the electroretinogram (ERG) b-wave, and variable degrees of involvement of other visual functions. We report here that mutations in GPR179, encoding an orphan G(More)
Circadian organization means the way in which the entire circadian system above the cellular level is put together physically and the principles and rules that determine the interactions among its component parts which produce overt rhythms of physiology and behavior. Understanding this organization and its evolution is of practical importance as well as of(More)
Daily rhythms are a ubiquitous feature of living systems. Generally, these rhythms are not just passive consequences of cyclic fluctuations in the environment, but instead originate within the organism. In mammals, including humans, the master pacemaker controlling 24-hour rhythms is localized in the suprachiasmatic nuclei of the hypothalamus. This(More)
Recent studies have demonstrated that melanopsin is a key photopigment in the mammalian circadian system. This novel opsin is exclusively expressed in retinal ganglion cells that are intrinsically sensitive to light, perhaps responding via a melanopsin-based signaling pathway. Previous investigations using transgenic mice have also demonstrated that(More)
Melatonin modulates many important functions within the eye by interacting with a family of G-protein-coupled receptors that are negatively coupled with adenylate cyclase. In the mouse, Melatonin Receptors type 1 (MT(1)) mRNAs have been localized to photoreceptors, inner retinal neurons, and ganglion cells, thus suggesting that MT(1) receptors may play an(More)
Chronic sleep loss, a common feature of human life in industrialized countries, is associated to cardiovascular disorders. Variations in functional parameters of coagulation might contribute to explain this relationship. By exploiting the mouse model and a specifically designed protocol, we demonstrated that seven days of partial sleep deprivation(More)