Gianluca Setti

Learn More
We present a true random number generator which, contrary to other implementations, is not based on the explicit observation of complex micro-cosmic processes but on standard signal processing primitives, freeing the designer from the need for dedicated hardware. The system can be implemented from now ubiquitous analog-to-digital converters building blocks,(More)
This paper and its companion are devoted to the evaluation of the impact of chaos-based techniques on communications systems with asynchronous code division multiple access. Sequences obtained by repeating a truncated and quantized chaotic time series are compared with classical -sequences and Gold sequences by means of a performance index taken from(More)
The application of chaotic dynamics to signal processing tasks stems from the realization that its complex behaviors become tractable when observed from a statistical perspective. Here we illustrate the validity of this statement by considering two noteworthy problems—namely, the synthesis of high-electromagnetic compatibility clock signals and the(More)
The idea that compressed sensing may be used to encrypt information from unauthorized receivers has already been envisioned but never explored in depth since its security may seem compromised by the linearity of its encoding process. In this paper, we apply this simple encoding to define a general private-key encryption scheme in which a transmitter(More)
In this paper we review some statistical tests included in the NIST SP 800-22 suite, which is a collection of tests for the evaluation of both true-random (physical) and pseudorandom (algorithmic) number generators for cryptographic applications. The output of these tests is the so-called <i>p</i>-value which is a random variable whose distribution(More)
We review a true random number generator which internally exploits a pipeline analog-to-digital converter modified to operate in chaotic mode. Contrarily to other true random number generators it is not based on the explicit observation of noisy physical quantities, freeing the designer from subtle technology-dependent details. In ideal conditions the model(More)