Gianluca Calestani

Learn More
We report here on a detailed study on PbS colloidal quantum dots. A characterization via X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM) allowed us to reliably determine the diameter and the shape of the nanocrystals. These data, together with second-derivative analysis of the absorption spectra, allowed us to determine(More)
The physical characterization and the extended crystallographic study of the double perovskite system Pb2Mn0.6Co0.4WO6 indicate an improper ferroelectric contribution to the polarization induced by the magnetic ordering. In the paramagnetic phase, the compound displays a centrosymmetric orthorhombic double perovskite structure with the Pmcn1' symmetry. The(More)
Although generally ascribed to the presence of defects, an ultimate assignment of the different contributions to the emission spectrum in terms of surface states and deep levels in ZnO nanostructures is still lacking. In this work we unambiguously give first evidence that zinc vacancies at the (1010) nonpolar surfaces are responsible for the green(More)
A new software package for quantitative electron diffraction data treatment of unknown structures is described. No "a priori" information is required by the package which is able to perform in successive steps the 2-D indexing of digitised diffraction patterns, the extraction of the intensity of the collected reflections and the 3-D indexing of all recorded(More)
Herein, we present the structural characterization of the core and surface of colloidally stable ultrathin bismuth sulfide (Bi(2)S(3)) nanowires using X-ray Absorption Spectroscopy (EXAFS and XANES), X-ray Photoelectron Spectroscopy (XPS), and Nuclear Magnetic Resonance (NMR). These three techniques allowed the conclusive structural characterization of the(More)
We report on a ìSR and 55 Mn NMR investigation of the magnetic order parameter as a function of temperature in the optimally doped La(5/8)(CaySr(1.y))(3/8)MnO3 and in the underdoped La1.xSrxMnO3 and La1.xCaxMnO3 metallic manganite families. The study is aimed at unravelling the effect of lattice distortions, implicitly controlled by the Ca-Sr isoelectronic(More)
We report on the self-assembly and the electrical characterization of bicomponent films consisting of an organic semiconducting small molecule blended with a rigid polymeric scaffold functionalized in the side chains with monomeric units of the same molecule. The molecule and polymer are a perylene-bis(dicarboximide) monomer (M-PDI) and a(More)
In this study, we show how the combination of metal ions, counter-anions and opportunely functionalized and preorganized ligands gives rise to two distinct supramolecular isomers, coordination polymeric chains and hexameric macrocycles. The hexamers then aggregate to form a cubic structure exhibiting permanent microporosity. The supramolecular assemblies(More)
Aryl radicals react with 2-(2-phenylethynyl)phenyl isothiocyanate through a novel radical cascade reaction entailing formation of alpha-(arylsulfanyl)imidoyl radicals and affording a new class of compounds, i.e. thiochromeno[2,3-b]indoles. These derivatives are formed as mixtures of substituted analogues arising from competitive [4 + 2] and [4 + 1] radical(More)
The asymmetric unit of the title salt, [p-FC6H4CH2NH3]+·H2PO4-, contains one 4-fluoro-benzyl-ammonium cation and one di-hydrogen phosphate anion. In the crystal, the H2PO4- anions are linked by O-H⋯O hydrogen bonds to build corrugated layers extending parallel to the ab plane. The FC6H4CH2NH3+ cations lie between these anionic layers to maximize the(More)