Gianluca Baldanzi

Learn More
Ghrelin is an acyl-peptide gastric hormone acting on the pituitary and hypothalamus to stimulate growth hormone (GH) release, adiposity, and appetite. Ghrelin endocrine activities are entirely dependent on its acylation and are mediated by GH secretagogue (GHS) receptor (GHSR)-1a, a G protein-coupled receptor mostly expressed in the pituitary and(More)
Cachexia is a wasting syndrome associated with cancer, AIDS, multiple sclerosis, and several other disease states. It is characterized by weight loss, fatigue, loss of appetite, and skeletal muscle atrophy and is associated with poor patient prognosis, making it an important treatment target. Ghrelin is a peptide hormone that stimulates growth hormone (GH)(More)
Ghrelin is an acylated peptidyl gastric hormone acting on the pituitary and hypothalamus to stimulate appetite, adiposity, and growth hormone release, through activation of growth hormone secretagogue receptor (GHSR)-1a receptor. Moreover, ghrelin features several activities such as inhibition of apoptosis, regulation of differentiation, and stimulation or(More)
Proteins essential for vesicle formation by the Coat Protein I (COPI) complex are being identified, but less is known about the role of specific lipids. Brefeldin-A ADP-ribosylated substrate (BARS) functions in the fission step of COPI vesicle formation. Here, we show that BARS induces membrane curvature in cooperation with phosphatidic acid. This finding(More)
Diacylglycerol (DAG) kinases (Dgk), which phosphorylate DAG to generate phosphatidic acid, act as either positive or negative key regulators of cell signaling. We previously showed that Src mediates growth factors-induced activation of Dgk-alpha, whose activity is required for cell motility, proliferation and angiogenesis. Here, we demonstrate that both(More)
BACKGROUND & AIMS Ischemic preconditioning has been proved effective in reducing ischemia/reperfusion injury during liver surgery. However, the mechanisms involved are still poorly understood. Here, we have investigated the role of phosphatidylinositol 3-kinase (PI3K) in the signal pathway leading to hepatic preconditioning. METHODS PI3K activation was(More)
Diacylglycerol kinases (DGKs) convert diacylglycerol (DAG) into phosphatidic acid (PA), acting as molecular switches between DAG- and PA-mediated signaling. We previously showed that Src-dependent activation and plasma membrane recruitment of DGKalpha are required for growth-factor-induced cell migration and ruffling, through the control of Rac small-GTPase(More)
Diacylglycerol kinases (Dgk) phosphorylate diacylglycerol (DG) to phosphatidic acid (PA), thus turning off and on, respectively, DG-mediated and PA-mediated signaling pathways. We previously showed that hepatocyte growth factor (HGF), vascular endothelial growth factor, and anaplastic lymphoma kinase activate Dgkalpha in endothelial and leukemia cells(More)
Diacylglycerol kinases are involved in cell signaling, either as regulators of diacylglycerol levels or as intracellular signal-generating enzymes. However, neither their role in signal transduction nor their biochemical regulation has been elucidated. Hepatocyte growth factor (HGF), upon binding to its tyrosine kinase receptor, activates multiple signaling(More)
Stimulation of G(q)-coupled receptors activates phospholipase C and is supposed to promote both intracellular Ca(2+) mobilization and protein kinase C (PKC) activation. We found that ADP-induced phosphorylation of pleckstrin, the main platelet substrate for PKC, was completely inhibited not only by an antagonist of the G(q)-coupled P2Y1 receptor but also(More)