Giancarlo Reali

Learn More
We report on a diode-pumped 1.3-microm Nd:GdVO4 cw laser, intracavity doubled for highly efficient generation of red light. We obtained as much as 2.4 W of power at 670 nm (corresponding to 26% optical-to-optical efficiency) in a nearly TEM00 mode and with small amplitude noise. To the best of our knowledge, these results represent the highest performance(More)
A diode-pumped single-pass amplifier system relying on two grazing-incidence Nd:YVO(4) slabs was developed to increase the energy of low-repetition-rate pulses from a decimated low-power cw mode-locked oscillator. Single-pass unsaturated gain up to 1.3x10(5) was achieved, and amplified pulses of 10-muJ energy and 8.0-ps duration were obtained. Efficient(More)
We describe recent improvements in the development of the high power laser system used in the motion induced radiation (MIR) experiment to amplify electromagnetic fields inside a microwave cavity. The improvements made on the oscillator stabilization, the pulse train shaping device, and the spatial beam uniformity are reported.
An optimized diode-laser side-pumped grazing-incidence Nd:YVO<sub>4</sub> amplifier was used to increase the power of a 50-mW 150-MHz continuous-wave (CW)-pumped mode-locked oscillator up to 6.1 W in single pass, with 22% optical-to-optical efficiency, or up to 8.4 W in double pass, with 30% efficiency. Both beam quality (M<sup>2</sup>&lt;1.4 from(More)
A Nd(3+)-doped Schott LG680 silicate glass laser was pumped with a single-mode 200-mW diode. Efficient cw operation was demonstrated with 37.5 mW output power and 36% slope efficiency. Passive mode-locking with a semiconductor saturable absorber mirror yielded 80-fs pulses with a two-prism setup. Alternatively, pulses of approximately 200-fs, tunable over(More)
Using a 150-mW single-transverse-mode laser diode at 802 nm for pumping an Nd:phosphate laser, we achieved efficient cw operation (40% slope efficiency) with pump threshold as low as 12 mW at optimum coupling, and a maximum output power of 53 mW. Under passive mode-locking operation, we obtained nearly Fourier-limited 270-fs pulses in a prismless(More)
We report the results of the investigation on a passively mode-locked Yb(3+):CaGdAlO(4) laser, pumped by a single transverse mode laser diode emitting 350 mW at 980 nm. This particular pump source allows efficient pumping with a nearly TEM(00) beam and minimal thermal load, making the optimization of the mode-locking performance more straightforward than(More)
We report on mode-locking of a Cr:YAG laser at 1516 nm using a monolayer graphene-based saturable absorber of transmission type generating 91 fs pulses with a Fourier product of 0.38 at an average output power exceeding 100 mW. Stable single-pulse mode-locked operation without any sign of Q-switching instabilities or multiple pulses is achieved.
An Nd:YVO4 amplifier consisting of two modules end pumped at 808 nm at 30 W total absorbed power has been designed for efficient, diffraction-limited amplification of ultrafast pulses from low-power seeders. We investigated amplification with a 50 mW, 7 ps Nd:YVO4 oscillator, a 2 mW, 15 ps Yb fiber laser, and a 30 mW, 300 fs Nd:glass laser. Output power as(More)
Low-threshold, efficient optical parametric generation at ~6100 nm is demonstrated using CdSiP2 nonlinear crystal at 1 to 10 kHz repetition rates with relatively long 500 ps pump pulses at 1064 nm. Maximum single pulse energy of 8.7 μJ and average power of 79 mW are achieved for the idler. Seeding at the signal wavelength is employed using a distributed(More)