Giacomo Dimarco

Learn More
Abstract. We introduce a class of exponential Runge-Kutta integration methods for kinetic equations. The methods are based on a decomposition of the collision operator into an equilibrium and a non equilibrium part and are exact for relaxation operators of BGK type. For Boltzmann type kinetic equations they work uniformly for a wide range of relaxation(More)
This paper collects the efforts done in our previous works [8],[11],[10] to build a robust multiscale kinetic-fluid solver. Our scope is to efficiently solve fluid dynamic problems which present non equilibrium localized regions that can move, merge, appear or disappear in time. The main ingredients of the present work are the followings ones: a fluid model(More)
This paper is a continuation of earlier work [6] in which we presented an automatic domain decomposition method for the solution of gas dynamics problems which require a localized resolution of the kinetic scale. The basic idea is to couple the macroscopic hydrodynamics model and the microscopic kinetic model through a buffer zone in which both equations(More)
We consider the development of Monte Carlo schemes for molecules with Coulomb interactions. We generalize the classic algorithms of Bird and Nanbu-Babovsky for rarefied gas dynamics to the Coulomb case thanks to the approximation introduced by Bobylev and Nanbu [1]. Thus, instead of considering the original Boltzmann collision operator, the schemes are(More)
In this note we consider the development of a domain decomposition scheme directly obtained from the multiscale hybrid scheme described in [7]. The basic idea is to couple macroscopic and microscopic models in all cases in which the macroscopic model does not provide correct results. We will show that it’s possible to view a Boltzmann-Euler domain(More)
If the collisional time scale for Coulomb collisions is comparable to the characteristic time scales for a plasma, then simulation of Coulomb collisions may be important for computation of kinetic plasma dynamics. This can be a computational bottleneck because of the large number of simulated particles and collisions (or phase-space resolution requirements(More)
In some recent works [11, 12] we developed a general framework for the construction of hybrid algorithms which are able to face efficiently the multiscale nature of some hyperbolic and kinetic problems. Here, at variance with respect to the previous methods, we construct a method form-fitting to any type of finite volume or finite difference scheme for the(More)