Ghislaine Béhar

Learn More
Five class II (B-L) B genes are encoded in the major histocompatibility complex (MHC) of chickens of the B 12 haplotype. We report here the nucleotide sequence of one of these genes, B-LBII, as well as the primary structure of a corresponding cDNA. The organization of B-LBII, its 5' flanking region including the promotor region, and the amino acid sequence(More)
Single-domain antibodies specific to methotrexate (MTX) were obtained after immunization of one llama (Llama glama). Specific VHH domains (V-D-J-REGION) were selected by panning from an immune-llama library using phage display technology. The antibody fragments specific to MTX were purified from Escherichia coli (C41 strain) periplasm by immobilized metal(More)
FcgammaRIII (CD16) plays an important role in the anti-tumor effects of therapeutic antibodies. Bi-specific antibodies (bsAbs) targeting FcgammaRIII represent a powerful alternative to the recruitment of the receptor via the Fc fragment, but are not efficiently produced. Single-domain antibodies (sdAbs) endowed with many valuable structural features might(More)
Engineered protein scaffolds have received considerable attention as alternatives to antibodies in both basic and applied research, as they can offer superior biophysical properties often associated with a simpler molecular organization. Sac7d has been demonstrated as an effective scaffold for molecular recognition. Here, we used the initial L1 'flat(More)
Glycosidases are associated with various human diseases. The development of efficient and specific inhibitors may provide powerful tools to modulate their activity. However, achieving high selectivity is a major challenge given that glycosidases with different functions can have similar enzymatic mechanisms and active-site architectures. As an alternative(More)
As a useful reagent for biotechnological applications, a scaffold protein needs to be as stable as possible to ensure longer lifetimes. We have developed archaeal extremophilic proteins from the “7 kDa DNA-binding” family as scaffolds to derive affinity proteins (Affitins). In this study, we evaluated a rational structure/sequence-guided approach to(More)
Artificially transforming a scaffold protein into binders often consists of introducing diversity into its natural binding region by directed mutagenesis. We have previously developed the archaeal extremophilic Sac7d protein as a scaffold to derive affinity reagents (Affitins) by randomization of only a flat surface, or a flat surface and two short loops(More)
Combinatorial libraries of Sac7d have proved to be a valuable source of proteins with favorable biophysical properties and novel ligand specificities, so-called Nanofitins. Thus, Sac7d represents a promising scaffold alternative to antibodies for biotechnological and potentially clinical applications. We describe here the methodology for the construction of(More)
Antibody-dependent cell-mediated cytotoxicity, one of the most prominent modes of action of antitumor antibodies, suffers from important limitations due to the need for optimal interactions with Fcγ receptors. In this work, we report the design of a new bispecific antibody format, compact and linker-free, based on the use of llama single-domain antibodies(More)
Directed evolution was used to generate IL-15 mutants with increased solubility and cytoplasmic over-expression in Escherichia coli. A protein solubility selection method was used in which the IL-15 gene was expressed as an N-terminal fusion to chloramphenicol acetyltransferase (CAT) as reporter protein. Clones that grew in the presence of high(More)