Ghislain Landry Tsafack Chetsa

  • Citations Per Year
Learn More
Hardware monitoring through performance counters is available on almost all modern processors. Although these counters are originally designed for performance tuning, they have also been used for evaluating power consumption. We propose two approaches for modelling and understanding the behaviour of high performance computing (HPC) systems relying on(More)
Energy usage is becoming a challenge for the design of next generation large scale distributed systems. This paper explores an innovative approach of profiling such systems. It proposes a DNA-like solution without making any assumptions on the running applications and used hardware. This profiling based on internal counters usage and energy monitoring(More)
Modern high performance computing subsystems (HPC) - including processor, network, memory, and IO - are provided with power management mechanisms. These include dynamic speed scaling and dynamic resource sleeping. Understanding the behavioral patterns of high performance computing systems at runtime can lead to a multitude of optimization opportunities(More)
The rising computing demands of scientific endeavors often require the creation and management of High Performance Computing (HPC) systems for running experiments and processing vast amounts of data. These HPC systems generally operate at peak performance, consuming a large quantity of electricity, even though their workload varies over time. Understanding(More)
A wide array of today's high performance computing (HPC) applications exhibits recurring behaviours or execution phases throughout their run-time. Accurate detection of program phases allows reconfiguring the system for a better power/performance trade off, and can reduce the simulation time of programs by identifying regions of code whose performance is(More)
Nowadays, there is no doubt that energy consumption has become a limiting factor in the design and operation of high performance computing (HPC) systems. This is evidenced by the rise of efforts both from the academia and the industry to reduce the energy consumption of those systems. Unlike hardware solutions, software initiatives targeting HPC systems’(More)
The subsystems that compose a HPC platform (e.g. CPU, memory, storage and network) are often designed and configured to deliver exceptional performance to a wide range of workloads. As a result, a large part of the power that these subsystems consume is dissipated as heat even when executing workloads that do not require maximum performance. Attempts to(More)
Nowadays, reducing the energy consumption of large scale and distributed infrastructures has truly become a challenge for both industry and academia. This is corroborated by the many efforts aiming to reduce the energy consumption of those systems. Initiatives for reducing the energy consumption of large scale and distributed infrastructures can without(More)
The increasing cost of powering high performance networking infrastructure has led to the proposal of various energy saving schemes. The On/Off technique, being the most common energy saving scheme, consists of powering down partially or entirely a network infrastructure for energy saving purposes. Despite their capability to achieve great energy savings,(More)