Gerson Jhonatan Rodrigues

Learn More
BACKGROUND Myocardium damage during Chagas' disease results from the immunological imbalance between pro- and production of anti-inflammatory cytokines and has been explained based on the Th1-Th2 dichotomy and regulatory T cell activity. Recently, we demonstrated that IL-17 produced during experimental T. cruzi infection regulates Th1 cells differentiation(More)
Sodium nitroprusside (SNP) is an endothelium-independent relaxant agent and its effect is attributed to its direct action on the vascular smooth muscle (VSM). Endothelium modulates the vascular tone through the release of vasoactive agents, such as NO. The aim of this study was to investigate the contribution of the endothelium on SNP vasorelaxation, NO(More)
Nitric oxide (NO) in NTS plays an important role in regulating autonomic function to the cardiovascular system. Using the fluorescent dye DAF-2 DA, we evaluated the NO concentration in NTS. Brainstem slices of rats were loaded with DAF-2 DA, washed, fixed in paraformaldehyde and examined under fluorescent light. In different experimental groups, NTS slices(More)
Vascular endothelium generates nitric oxide (NO) in large vessels and induces relaxation of vascular smooth muscle cells (VSMC). The aim of this study was to evaluate the contribution of NO produced in the endothelial cells (EC) to the relaxation induced by the Ca2+ ionophore A23187 and whether this relaxation is impaired in renal hypertensive (2K-1C) rat(More)
Impaired relaxation induced by the new nitric oxide (NO) donor [Ru(NH.NHq)(terpy)NO(+)](3+) (TERPY) has been observed in the aortic rings from renal hypertensive rats (2K-1C). An increased production of reactive oxygen species (ROS) in the aortas from 2K-1C rats are capable of reducing NO bioavailability. Therefore, this study aimed at investigating the(More)
The present study was designed to investigate the contribution of endothelial cell caveolae to vascular relaxation in aortas from a normotensive (2K) and renal hypertensive (2K-1C) rat. For that purpose, concentration-effect curves to acetylcholine were constructed in 2K and 2K-1C intact endothelium aortic rings, in the absence or in the presence of the(More)
Mounting evidence indicates that structural and functional vascular changes associated with two-kidney, one-clip (2K-1C) hypertension result, at least in part, from altered activity of matrix metalloproteinases (MMPs). Because MMPs are upregulated by increased formation of reactive oxygen species (ROS), we hypothesized that antioxidant approaches could(More)
Vascular dysfunction associated with two-kidney, one-clip (2K-1C) hypertension may result from both altered matrix metalloproteinase (MMP) activity and higher concentrations of reactive oxygen species (ROS). Doxycycline is considering the most potent MMP inhibitor of tetracyclines and attenuates 2K-1C hypertension-induced high blood pressure and chronic(More)
BACKGROUND AND PURPOSE Benznidazole (Bz) is the therapy currently available for clinical treatment of Chagas' disease. However, many strains of Trypanosoma cruzi parasites are naturally resistant. Nitric oxide (NO) produced by activated macrophages is crucial to the intracellular killing of parasites. Here, we investigate the in vitro and in vivo activities(More)
Relaxation induced by nitric oxide (NO) donors is impaired in renal hypertensive two kidney-one clip (2K-1C) rat aortas. It has been proposed that caveolae are important in signal transduction and Ca2+ homeostasis. Therefore, in the present study we investigate the integrity of caveolae in vascular smooth muscle cells (VSMCs), as well as their influence on(More)