Gerry A. F. Nicolaes

Learn More
BACKGROUND Generation of active procoagulant cofactor factor Va (FVa) and its subsequent association with the enzyme activated factor X (FXa) to form the prothrombinase complex is a pivotal initial event in blood coagulation and has been the subject of investigative effort, speculation, and controversy. The current paradigm assumes that FV activation is(More)
During these last 15 years, drug discovery strategies have essentially focused on identifying small molecules able to inhibit catalytic sites. However, other mechanisms could be targeted. Protein-protein interactions play crucial roles in a number of biological processes, and, as such, their disruption or stabilization is becoming an area of intense(More)
Mitochondrial complex I deficiency is the most common oxidative phosphorylation defect. Mutations have been detected in mitochondrial and nuclear genes, but the genetics of many patients remain unresolved and new genes are probably involved. In a consanguineous family, patients presented easy fatigability, exercise intolerance and lactic acidosis in blood(More)
BACKGROUND We have reported previously that, compared with use of second-generation oral contraceptives, the use of third-generation oral contraceptives is associated with increased resistance to the anticoagulant action of activated protein C (APC). Owing to the cross-sectional design of that study, these observations may have been subject to unknown bias(More)
The pharmacophore concept is of central importance in computer-aided drug design (CADD) mainly because of its successful application in medicinal chemistry and, in particular, high-throughput virtual screening (HTVS). The simplicity of the pharmacophore definition enables the complexity of molecular interactions between ligand and receptor to be reduced to(More)
Inactivation of membrane-bound factor Va by activated protein C (APC) proceeds via a biphasic reaction that consists of a rapid and a slow phase, which are associated with cleavages at Arg506 and Arg306 of the heavy chain of factor Va, respectively. We have investigated the effects of protein S and factor Xa on APC-catalyzed factor Va inactivation. Protein(More)
Protein S expresses cofactor activity for activated protein C (APC) by enhancing the APC-catalyzed proteolysis at R(306) in factor Va. It is generally accepted that only free protein S is active and that complex formation with C4b-binding protein (C4BP) inhibits the APC-cofactor activity of protein S. However, the present study shows that protein S-C4BP(More)
Coagulation factor V (FV) is a large plasma glycoprotein with functions in both the pro- and anticoagulant pathways. In carriers of the so-called R2-FV haplotype, the FV D2194G mutation, in the C2 membrane-binding domain, is associated with low expression levels, suggesting a potential folding/stability problem. To analyze the molecular mechanisms(More)
The CD154-CD40 receptor complex plays a pivotal role in several inflammatory pathways. Attempts to inhibit the formation of this complex have resulted in systemic side effects. Downstream inhibition of the CD40 signaling pathway therefore seems a better way to ameliorate inflammatory disease. To relay a signal, the CD40 receptor recruits adapter proteins(More)
The C domains of coagulation factors V (FV) and VIII (FVIII) are structurally conserved domains and share a common and essential function in membrane binding. In vivo regulation of thrombin formation strongly depends on the expression and regulation of the cofactor activities of FVIII and FV. With this study, we explored the possibility of inhibition of(More)