Gerrit J. Schut

Learn More
The hyperthermophilic archaeon Pyrococcus furiosus uses carbohydrates as a carbon source and produces acetate, CO2, and H2 as end products. When S(0) is added to a growing culture, within 10 min the rate of H2 production rapidly decreases and H(2)S is detected. After 1 hour cells contain high NADPH- and coenzyme A-dependent S(0) reduction activity (0.7(More)
An early divergence in evolution has resulted in two prokaryotic domains, the Bacteria and the Archaea. Whereas the central metabolic routes of bacteria and eukaryotes are generally well-conserved, variant pathways have developed in Archaea involving several novel enzymes with a distinct control. A spectacular example of convergent evolution concerns the(More)
The first complete-genome DNA microarray was constructed for a hyperthermophile or a nonhalophilic archaeon by using the 2,065 open reading frames (ORFs) that have been annotated in the genome of Pyrococcus furiosus (optimal growth temperature, 100 degrees C). This was used to determine relative transcript levels in cells grown at 95 degrees C with either(More)
In attempts to develop a method of introducing DNA into Pyrococcus furiosus, we discovered a variant within the wild-type population that is naturally and efficiently competent for DNA uptake. A pyrF gene deletion mutant was constructed in the genome, and the combined transformation and recombination frequencies of this strain allowed marker replacement by(More)
The hyperthermophilic and anaerobic bacterium Thermotoga maritima ferments a wide variety of carbohydrates, producing acetate, CO(2), and H(2). Glucose is degraded through a classical Embden-Meyerhof pathway, and both NADH and reduced ferredoxin are generated. The oxidation of these electron carriers must be coupled to H(2) production, but the mechanism by(More)
DNA microarrays were constructed by using 271 open reading frame (ORFs) from the genome of the archaeon Pyrococcus furiosus. They were used to investigate the effects of elemental sulfur (S(primary)) on the levels of gene expression in cells grown at 95 degrees C with maltose as the carbon source. The ORFs included those that are proposed to encode proteins(More)
This work describes the identification and characterization of SurR, Pyrococcus furiosus sulphur (S(0)) response regulator. SurR was captured from cell extract using promoter DNA of a hydrogenase operon that is downregulated in the primary response of P. furiosus to S(0), as revealed by DNA microarray experiments. SurR was validated as a sequence-specific(More)
The hyperthermophilic archaeon, Pyrococcus furiosus, was grown on maltose near its optimal growth temperature, 95 degrees C, and at the lower end of the temperature range for significant growth, 72 degrees C. In addition, cultures were shocked by rapidly dropping the temperature from 95 to 72 degrees C. This resulted in a 5-h lag phase, during which time(More)
Pyrococcus furiosus is a shallow marine, anaerobic archaeon that grows optimally at 100°C. Addition of H2O2 (0.5 mM) to a growing culture resulted in the cessation of growth with a 2-h lag before normal growth resumed. Whole genome transcriptional profiling revealed that the main response occurs within 30 min of peroxide addition, with the up-regulation of(More)
The hyperthermophilic archaeon Pyrococcus furiosus grows optimally at 100 degrees C by the fermentation of peptides and carbohydrates. Growth of the organism was examined in media containing either maltose, peptides (hydrolyzed casein), or both as the carbon source(s), each with and without elemental sulfur (S(0)). Growth rates were highest on media(More)