Gerrit Buse

  • Citations Per Year
Learn More
The sparse grid discretization technique enables a compressed representation of higher-dimensional functions. In its original form, it relies heavily on recursion and complex data structures, thus being far from well-suited for GPUs. In this paper, we describe optimizations that enable us to implement compression and decompression, the crucial sparse grid(More)
The name sparse grids denotes a highly space-efficient, grid-based numerical technique to approximate high-dimensional functions. Although employed in a broad spectrum of applications from different fields, there have only been few tries to use it in real time visualization (e.g. [1]), due to complex data structures and long algorithm runtime. In this work(More)
In a complex processor landscape dominated by multiand many-core processors, simplifying programming plays a crucial role in enhancing developers’ productivity. One way is to use highly tuned library functions. In this paper we present fastsg, an optimized library for the sparse grid technique with support for dimensional truncation. With optimizations for(More)
Understanding the influence of multiple parameters in a complex simulation setting is a difficult task. In the ideal case, the scientist can freely steer such a simulation and is immediately presented with the results for a certain configuration of the input parameters. Such an exploration process is however not possible if the simulation is computationally(More)
The aim of this thesis is to implement a multi-level splitting of full grids on the GPU, which could be used in the incremental visualization of scientific data sets. The splitting is motivated by the approximation properties of the sparse grid technique. Looking towards large amounts of data, ideas of parallelization and data slicing are discussed and(More)
  • 1