Gero Nootz

We don’t have enough information about this author to calculate their statistics. If you think this is an error let us know.
Learn More
The cross-flow orientation of an optically active turbulent field was determined by Fourier transforming the wander of a laser beam propagating in the ocean. A simple physical model for the measured effect is offered, and numerical simulations are performed. The simulations are in good agreement with measurements, validating the assumptions made in the(More)
The influence of optically active turbulence on the propagation of laser beams is investigated in clear ocean water over a path length of 8.75 m. The measurement apparatus is described and the effects of optical turbulence on the laser beam are presented. The index of refraction structure constant is extracted from the beam deflection and the results are(More)
The propagation of a laser beam through Rayleigh-Bénard (RB) turbulence is investigated experimentally and by way of numerical simulation. For the experimental part, a focused laser beam transversed a 5  m×0.5  m×0.5  m water filled tank lengthwise. The tank is heated from the bottom and cooled from the top to produce convective RB turbulence. The effect of(More)
Turbulence poses challenges in many atmospheric and underwater surveillance applications. The compressive line sensing (CLS) active imaging scheme has been demonstrated in simulations and test tank experiments to be effective in scattering media such as turbid coastal water, fog, and mist. The CLS sensing model adopts the distributed compressive sensing(More)
Compressive sensing (CS) theory has drawn great interest in recent years and has led to new image acquisition techniques in many different fields. This research investigates a CS based active underwater laser serial imaging system, which employs a Spatial Light Modulator (SLM) at the source. A multi-scale polarity flipping measurement matrix and a(More)
  • 1