Learn More
Brain-Computer Interface (BCI) research has become a growing field of interest in the last years. The work presented ranges from machine learning approaches in offline results to the application of a BCI in patients. However, reliable classification of brain activity is a crucial issue in BCI research. In contrast to most articles which present methods to(More)
Nowadays, everybody knows what a hybrid car is. A hybrid car normally has two engines to enhance energy efficiency and reduce CO2 output. Similarly, a hybrid brain-computer interface (BCI) is composed of two BCIs, or at least one BCI and another system. A hybrid BCI, like any BCI, must fulfill the following four criteria: (i) the device must rely on signals(More)
In recent years, new research has brought the field of electroencephalogram (EEG)-based brain-computer interfacing (BCI) out of its infancy and into a phase of relative maturity through many demonstrated prototypes such as brain-controlled wheelchairs, keyboards, and computer games. With this proof-of-concept phase in the past, the time is now ripe to focus(More)
Brain-computer interfaces (BCIs) can be realized on the basis of steady-state evoked potentials (SSEPs). These types of brain signals resulting from repetitive stimulation have the same fundamental frequency as the stimulation but also include higher harmonics. This study investigated how the classification accuracy of a 4-class BCI system can be improved(More)
The description of neurophysiological tools is broken down into psychophysiological tools and neurophysiological tools. For additional details, see Riedl et al. (2010). Eye Tracking Eye tracking tools measure where the eye is looking (eye position) or the eye's motion relative to the head (eye movement) (Shimojo et al. 2003). Eye tracking tools gather data(More)
An improvement of the information transfer rate of brain-computer communication is necessary for the creation of more powerful and convenient applications. This paper presents an asynchronously controlled three-class brain-computer interface-based spelling device [virtual keyboard (VK)], operated by spontaneous electroencephalogram and modulated by motor(More)
The aim of the present study was to demonstrate for the first time that brain waves can be used by a tetraplegic to control movements of his wheelchair in virtual reality (VR). In this case study, the spinal cord injured (SCI) subject was able to generate bursts of beta oscillations in the electroencephalogram (EEG) by imagination of movements of his(More)
A "virtual keyboard" (VK) is a letter spelling device operated for example by spontaneous electroencephalogram (EEG), whereby the EEG is modulated by mental hand and leg motor imagery. We report on three able-bodied subjects, operating the VK. The ability in the use of the VK varies between 0.85 and 0.5 letters/min in error-free writing.
Brain-computer interface (BCI) systems do not work for all users. This article introduces a novel combination of tasks that could inspire BCI systems that are more accurate than conventional BCIs, especially for users who cannot attain accuracy adequate for effective communication. Subjects performed tasks typically used in two BCI approaches, namely(More)
Brain-computer interfaces (BCIs) are systems that establish a direct connection between the human brain and a computer, thus providing an additional communication channel. They are used in a broad field of applications nowadays. One important issue is the control of neuroprosthetic devices for the restoration of the grasp function in spinal-cord-injured(More)