German S. Fox-Rabinovich

Learn More
Self-organization during friction in complex surface engineered tribosystems is investigated. The probability of self-organization in these complex tribosystems is studied on the basis of the theoretical concepts of irreversible thermodynamics. It is shown that a higher number of interrelated processes within the system result in an increased probability of(More)
Atomic-scale, tribo-ceramic films associated with dissipative structures formation are discovered under extreme frictional conditions which trigger self-organization. For the first time, we present an actual image of meta-stable protective tribo-ceramics within thicknesses of a few atomic layers. A mullite and sapphire structure predominates in these(More)
This article discusses the peculiarities of self-organization behavior and formation of dissipative structures during friction of antifriction alloys for slide bearings against a steel counterbody. It shows that during self-organization, the moment of friction in a tribosystem may be decreasing with the load growth and in the bifurcations of the coefficient(More)
Adaptive wear-resistant coatings produced by physical vapor deposition (PVD) are a relatively new generation of coatings which are attracting attention in the development of nanostructured materials for extreme tribological applications. An excellent example of such extreme operating conditions is high performance machining of hard-to-cut materials. The(More)
Tribofilms are dynamic structures that form at the interface during frictional sliding. These films play a significant role in friction control, particularly under heavy loaded/high temperature conditions, such as those found at the cutting tool/chip interface. The thermodynamic aspects of tribofilm formation are discussed here. Thermodynamic analysis of(More)
Application of the phenomenon of self-organization for the development of wear resistant materials has been reviewed. For this purpose the term of self-organization and dissipative structures as applied to tribology have been discussed. The applications of this phenomenon have been shown in order to develop new wear resistantand antifriction materials.(More)
Adaptive TiAlCrSiYN-based coatings show promise under the extreme tribological conditions of dry ultra-high-speed (500-700 m min-1) machining of hardened tool steels. During high speed machining, protective sapphire and mullite-like tribo-films form on the surface of TiAlCrSiYN-based coatings resulting in beneficial heat-redistribution in the cutting zone.(More)
Plasmon resonance heterogeneities were identified and studied along Ag and TiAlN layers within a multilayer stack in nanolaminate TiAlN/Ag coatings. For this purpose, a high-resolution plasmon microscopy was used. The plasmons intensity, energy, and depth of interface plasmon-polariton penetration were studied by scanning reflected electron energy loss(More)
In addition to the bulk properties of a workpiece material, characteristics of the tribofilms formed as a result of workpiece material mass transfer to the friction surface play a significant role in friction control. This is especially true in cutting of hardened materials, where it is very difficult to use liquid based lubricants. To better understand(More)
In this paper, we will develop a strategy for controlling the self-organized critical process using the example of extreme tribological conditions caused by intensive build-up edge (BUE) formation that take place during machining of hard-to-cut austentic superduplex stainless steel SDSS UNS32750. From a tribological viewpoint, machining of this material(More)