Germán Ebensperger

Learn More
AIMS To study the nitric oxide (NO) and carbon monoxide roles in the regulation of the pulmonary circulation in lowland and highland newborn sheep and llamas. METHODS AND RESULTS We used neonatal sheep (Ovis aries) and llamas (Lama glama) whose gestation and delivery took place at low (580 m) or high (3600 m) altitude. In vivo, we measured the(More)
Compared with lowland species, fetal life for mammalian species whose mothers live in high altitude is demanding. For instance, fetal llamas have to cope with the low fetal arterial PO2 of all species, but also the likely superimposition of hypoxia as a result of the decreased oxygen environment in which the mother lives in the Andean altiplano. When(More)
We determined whether postnatal pulmonary hypertension induced by 70% of pregnancy at high altitude (HA) persists once the offspring return to sea level and investigated pulmonary vascular mechanisms operating under these circumstances. Pregnant ewes were divided into two groups: conception, pregnancy, and delivery at low altitude (580 m, LLL) and(More)
Pulmonary arterial hypertension is one of the most serious pathologies that can affect the 140 million people living at altitudes over 2500 m. The primary emphasis of this review is pulmonary artery hypertension in mammals (sheep and llamas) at high altitude, with specific focus on the heme oxygenase and carbon monoxide (HO-CO) system. We highlight the fact(More)
Using an integrative approach at the whole animal, isolated vessels, and molecular levels, we tested the hypothesis that the llama, a species that undergoes pregnancy under the influence of the chronic hypoxia of high altitude, delivers offspring with an increased α-adrenergic peripheral vascular reactivity compared with neonates from lowland species. We(More)
  • 1