Gerlind Stoller

Learn More
The reversible protein phosphorylation on serine or threonine residues that precede proline (pSer/Thr-Pro) is a key signaling mechanism for the control of various cellular processes, including cell division. The pSer/Thr-Pro moiety in peptides exists in the two completely distinct cis and trans conformations whose conversion is catalyzed specifically by the(More)
Peptidyl-prolyl cis/trans isomerases (PPIases) are enzymes that catalyse protein folding both in vitro and in vivo. We isolated a peptidyl-prolyl cis/trans isomerase (PPIase) which is specifically associated with the 50S subunit of the Escherichia coli ribosome. This association was abolished by adding at least 1.5 M LiCl. Sequencing the N-terminal amino(More)
The trigger factor of Escherichia coli is a prolyl isomerase and accelerates proline-limited steps in protein folding with a very high efficiency. It associates with nascent polypeptide chains at the ribosome and is thought to catalyse the folding of newly synthesized proteins. In its enzymatic mechanism the trigger factor follows the Michaelis-Menten(More)
The peptidyl prolyl cis/trans isomerase Pin1 has been implicated in the development of cancer, Alzheimer's disease and asthma, but highly specific and potent Pin1 inhibitors remain to be identified. Here, by screening a combinatorial peptide library, we identified a series of nanomolar peptidic inhibitors. Nonproteinogenic amino acids, incorporated into(More)
A low degree of amino acid sequence similarity to FK506-binding proteins (FKBPs) has been obtained for the peptidyl prolyl cis/trans isomerase (PPIase) domain of E. coli trigger factor (TF) that was thought to be significant with regard to the enzymatic properties of the bacterial enzyme. We examined whether the alteration of a negatively charged side-chain(More)
The Escherichia coli trigger factor is a peptidyl-prolyl cis/trans isomerase (PPIase) which catalyzes proline-limited protein folding extremely well. It has been found associated with nascent protein chains as well as with the chaperone GroEL. The trigger factor utilizes protein regions outside the central catalytic domain for catalyzing refolding of(More)
In Escherichia coli, protein folding is undertaken by three distinct sets of chaperones, the DnaK-DnaJ and GroEL-GroES systems and the trigger factor (TF). TF has been proposed to be the first chaperone to interact with the nascent polypeptide chain as it emerges from the tunnel of the 70S ribosome and thus probably plays an important role in(More)
A functionally Pin1-like peptidyl-prolyl cis/trans isomerase (PPIase(1)) was isolated from proembryogenic masses (PEMs) of Digitalis lanata according to its enzymatic activity. Partial sequence analysis of the purified enzyme (DlPar13) revealed sequence homology to members of the parvulin family of PPIases. Similar to human Pin1 and yeast Ess1, it exhibits(More)
The 48 kDa trigger factor (TF) of E. coli was shown to be a peptidyl-prolyl cis/trans isomerase (PPIase). Its location on a ribosomal particle is unique among the PPIases described so far, and suggests a role in de novo protein folding. The trigger factor was investigated with regard to a domain carrying the catalytic activity. An enzymatically active(More)
We identified a periplasmic peptidyl-prolyl cis/trans-isomerase (PPIase) of the (FK506-binding protein (FKBP) type in Escherichia coli (FK506 represents a natural peptidomacrolide containing an acylated pipecolic acid residue). After purification to homogeneity, its complete amino acid sequence was determined by a combination of Edman degradation and(More)