Learn More
The intraneuronal accumulation of paired helical filaments in the form of neurofibrillary tangles is one hallmark of the brain pathology in Alzheimer's disease. At certain predilection sites, a small number of similar lesions are also present in the brains of the majority of aged non-demented individuals. As suggested by several studies before, these(More)
We have generated a series of plectin deletion and mutagenized cDNA constructs to dissect the functional sequences that mediate plectin's interaction with intermediate filament (IF) networks, and scored their ability to coalign or disrupt intermediate filaments when ectopically expressed in rat kangaroo PtK2 cells. We show that a stretch of approximately 50(More)
Previous studies on the role of microtubule-associated protein 1B (MAP1B) in adapting microtubules for nerve cell-specific functions have examined the activity of the entire MAP1B protein complex consisting of heavy and light chains and revealed moderate effects on microtubule stability. Here we have analyzed the effects of the MAP1B light chain in the(More)
Plectin, the most versatile cytolinker identified to date, has essential functions in maintaining the mechanical integrity of skin, skeletal muscle and heart, as indicated by analyses of plectin-deficient mice and humans. Expression of plectin in a vast variety of tissues and cell types, combined with a large number of different binding partners identified(More)
An antigenic profile of subcortical and cortical Lewy bodies was determined in the presence or absence of neurofibrillary tangles in the same brain using antisera and monoclonal antibodies to various cytoskeletal elements as well as to determinants not present in the normal cytoskeleton. The cores of many Lewy bodies were strongly reactive with a monoclonal(More)
Plectin is an intermediate filament (IF) binding protein of exceptionally large size. Its molecular structure, revealed by EM and predicted by its sequence, indicates an NH2-terminal globular domain, a long rodlike central domain, and a globular COOH-terminal domain containing six highly homologous repeat regions. To examine the role of the various domains(More)
Microtubule-associated proteins such as MAP1B have long been suspected to play an important role in neuronal differentiation, but proof has been lacking. Previous MAP1B gene targeting studies yielded contradictory and inconclusive results and did not reveal MAP1B function. In contrast to two earlier efforts, we now describe generation of a complete MAP1B(More)
Plectin is a major intermediate filament (IF)-based cytolinker protein that stabilizes cells and tissues mechanically, regulates actin filament dynamics, and serves as a scaffolding platform for signaling molecules. In this study, we show that plectin deficiency is a cause of aberrant keratin cytoskeleton organization caused by a lack of orthogonal IF(More)
Recent studies with patients suffering from epidermolysis bullosa simplex associated with muscular dystrophy and the targeted gene disruption in mice suggested that plectin, a versatile cytoskeletal linker and intermediate filament-binding protein, may play an essential role in hemidesmosome integrity and stabilization. To define plectin's interactions with(More)
We report the genomic organization of the mouse and rat genes coding for the 2460-amino-acid microtubule-associated protein (MAP) 1B. In addition to seven exons that encode full-length MAP1B, we have identified two alternative exons, exon 3A and the novel exon 3U. We demonstrate that alternative MAP1B transcripts containing either exon 3A or exon 3U are(More)