Learn More
Starch is the major storage carbohydrate in higher plants and of considerable importance for the human diet and for numerous technical applications. In addition, starch can be accumulated transiently in chloroplasts as a temporary deposit of carbohydrates during ongoing photosynthesis. This transitory starch has to be mobilized during the subsequent dark(More)
To determine the enzymatic function of the starch-related R1 protein it was heterologously expressed in Escherichia coli and purified to apparent homogeneity. Incubation of the purified protein with various phosphate donor and acceptor molecules showed that R1 is capable of phosphorylating glucosyl residues of alpha-glucans at both the C-6 and the C-3(More)
We have cloned a gene involved in starch metabolism that was identified by the ability of its product to bind to potato starch granules. Reduction in the protein level of transgenic potatoes leads to a reduction in the phosphate content of the starch. The complementary result is obtained when the protein is expressed in Escherichia coli, as this leads to an(More)
Glucan, water dikinase (GWD) and phosphoglucan, water dikinase (PWD) are required for normal starch metabolism. We analysed starch phosphorylation in Arabidopsis wild-type plants and mutants lacking either GWD or PWD using (31)P NMR. Phosphorylation at both C6- and C3-positions of glucose moieties in starch was drastically decreased in GWD-deficient(More)
During the day, plants accumulate starch in their leaves as an energy source for the coming night. Based on recent findings, the prevailing view of how the transitory starch is remobilized needs considerable revision. Analyses of transgenic and mutant plants demonstrate that plastidic glucan phosphorylase is not required for normal starch breakdown and cast(More)
The phosphorylation of amylopectin by the glucan, water dikinase (GWD; EC 2.7.9.4) is an essential step within starch metabolism. This is indicated by the starch excess phenotype of GWD-deficient plants, such as the sex1-3 mutant of Arabidopsis (Arabidopsis thaliana). To identify starch-related enzymes that rely on glucan-bound phosphate, we studied the(More)
Glucan phosphorylating enzymes are required for normal mobilization of starch in leaves of Arabidopsis (Arabidopsis thaliana) and potato (Solanum tuberosum), but mechanisms underlying this dependency are unknown. Using two different activity assays, we aimed to identify starch degrading enzymes from Arabidopsis, whose activity is affected by glucan(More)
Starch is the major storage carbohydrate in plants. It is comprised of glucans that form semicrystalline granules. Glucan phosphorylation is a prerequisite for normal starch breakdown, but phosphoglucan metabolism is not understood. A putative protein phosphatase encoded at the Starch Excess 4 (SEX4) locus of Arabidopsis thaliana was recently shown to be(More)
Among the three distinct starch phosphorylase activities detected in Chlamydomonas reinhardtii, two distinct plastidial enzymes (PhoA and PhoB) are documented while a single extraplastidial form (PhoC) displays a higher affinity for glycogen as in vascular plants. The two plastidial phosphorylases are shown to function as homodimers containing two 91-kDa(More)
Intact starch granules were isolated from leaves of Solanum tuberosum L. (and from Pisum sativum L.), and the patterns of starch-associated proteins were determined by SDS-PAGE. Depending on the pretreatment of the leaves the protein patterns varied: a 160 kDa compound was present in the starch-associated protein fraction when the leaves were darkened and(More)