Gerhard Behre

Learn More
Transcription factor CCAAT enhancer binding protein alpha (C/EBPalpha) is essential for granulopoiesis and its function is deregulated in leukemia. Inhibition of E2F1, the master regulator of cell-cycle progression, by C/EBPalpha is pivotal for granulopoiesis. Recent studies show microRNA-223 (miR-223), a transcriptional target of C/EBPalpha, as a critical(More)
The transcription factor C/EBPalpha (for CCAAT/enhancer binding protein-alpha; encoded by the gene CEBPA) is crucial for the differentiation of granulocytes. Conditional expression of C/EBPalpha triggers neutrophilic differentiation, and no mature granulocytes are observed in Cebpa-mutant mice. Here we identify heterozygous mutations in CEBPA in ten(More)
The transcription factor CCAAT/enhancer binding protein α, or C/EBPα, encoded by the CEBPA gene, is crucial for the differentiation of granulocytes. Conditional expression of C/EBPα triggers neutrophilic differentiation, and Cebpa knockout mice exhibit an early block in maturation. Dominant-negative mutations of CEBPA have been found in some patients with(More)
The process through which multipotential hematopoietic cells commit to distinct lineages involves the induction of specific transcription factors. PU.1 (also known as Spi-1) and GATA-1 are transcription factors essential for the development of myeloid and erythroid lineages, respectively. Overexpression of PU.1 and GATA-1 can block differentiation in(More)
The transcription factor PU.1 is required for normal blood cell development. PU.1 regulates the expression of a number of crucial myeloid genes, such as the macrophage colony-stimulating factor (M-CSF) receptor, the granulocyte colony-stimulating factor (G-CSF) receptor, and the granulocyte-macrophage colony-stimulating factor (GM-CSF) receptor. Myeloid(More)
The transcription factor, CCAAT enhancer binding protein alpha (C/EBPα), is crucial for granulopoiesis and is deregulated by various mechanisms in acute myeloid leukemia (AML). Mutations in the CEBPA gene are reported in 10% of human patients with AML. Even though the C/EBPα mutants are known to display distinct biologic function during leukemogenesis, the(More)
We carried out a study in patients with severe neutropenia from hematologic malignancy and suspected gram-negative sepsis to evaluate the clinical significance of endotoxin concentrations in plasma before and during a therapeutic intervention with a human polyclonal immunoglobulin M (IgM)-enriched immunoglobulin preparation (Pentaglobin; Biotest, Dreieich,(More)
The transcription factor C/EBP alpha regulates early steps of normal granulocyte differentiation since mice with a disruption of the C/EBP alpha gene do not express detectable levels of the granulocyte colony-stimulating factor receptor and produce no neutrophils. We have recently shown that C/EBP alpha function is also impaired in acute myeloid leukemias.(More)
Almost 30% of all acute myeloid leukemias (AML) are associated with an internal tandem duplication (ITD) in the juxtamembrane domain of FMS-like tyrosine kinase 3 receptor (FLT3). Patients with FLT3-ITD mutations tend to have a poor prognosis. MicroRNAs (miRNAs) have a pivotal role in myeloid differentiation and leukemia. MiRNA-155 (MiR-155) was found to be(More)