Gerhard Baaken

  • Citations Per Year
Learn More
Increasing the throughput and resolution of electrical recording of currents through ion conducting channels and pores is an important technical challenge both for the functional analysis of ion channel proteins and for the application of nanoscale pores in single molecule analytical tasks. We present a novel design based on sub-picoliter-cavities arrayed(More)
We report on parallel high-resolution electrical single-molecule analysis on a chip-based nanopore microarray. Lipid bilayers of <20 μm diameter containing single alpha-hemolysin pores were formed on arrays of subpicoliter cavities containing individual microelectrodes (microelectrode cavity array, MECA), and ion conductance-based single molecule mass(More)
Electrophysiological studies of the interaction of polymers with pores formed by bacterial toxins (1) provide a window on single molecule interaction with proteins in real time, (2) report on the behavior of macromolecules in confinement, and (3) enable label-free single molecule sensing. Using pores formed by the staphylococcal toxin α-hemolysin (aHL), a(More)
Efficient use of membrane protein nanopores in ionic single-molecule sensing requires technology for the reliable formation of suspended molecular membranes densely arrayed in formats that allow high-resolution electrical recording. Here, automated formation of bimolecular lipid layers is shown using a simple process where a poly(tetrafluoroethylene)-coated(More)
Measurement of mechanical properties of soft biological tissue remains a challenging task in mechanobiology. Recently, we presented a bioreactor for simultaneous mechanostimulation and analysis of the mechanical properties of soft biological tissue samples. In this bioreactor, the sample is stretched via deflection of a flexible membrane. It was found that(More)
In general, the method of choice to characterize the conductance properties of channel-forming bacterial porins is electrophysiology. Here, the classical method is to reconstitute single porins into planar lipid bilayers to derive functional information from the observed channel conductance. In addition to an estimated pore size, ion selectivity or(More)
Ein Array aus einzelnen individuell elektrisch kontaktierten biologischen Nanoporen in synthetischen Lipidmembranen erlaubt die parallele Detektion einzelner Moleküle in wässrigen Lösungen. Die hohe Auflösung der Messungen wird beim Einsatz zur präzisen Bestimmung der Massenverteilung von Polymeren deutlich. A chip array in which single biological nanopores(More)
Bacillus thuringiensis parasporal crystal proteins (Cry proteins) are insecticidal pore-forming toxins that bind to specific receptor molecules on the brush border membrane of susceptible insect midgut cells to exert their toxic action. In the Colorado potato beetle (CPB), a coleopteran pest, we previously proposed that interaction of Cry3Aa toxin with a(More)
  • 1