Gerd Schoenhense

  • Citations Per Year
Learn More
Photoemission electron microscopy was used to image the electrons photoemitted from specially tailored Ag nanoparticles deposited on a Si substrate (with its native oxide SiO(x)). Photoemission was induced by illumination with a Hg UV lamp (photon energy cutoff homega(UV) = 5.0 eV, wavelength lambda(UV) = 250 nm) and with a Ti:sapphire femtosecond laser(More)
Measurements performed in an electron microscope with the mirror operation mode are most sensitive to local electric fields and geometrical roughness of any kind of the object being studied. The object with a geometrical relief is equivalent to a smooth surface with an effective distribution of microfields. Electrons forming the image interact with the(More)
A photoemission electron microscope based on a new contrast mechanism "interference contrast" is applied to characterize extreme ultraviolet lithography mask blank defects. Inspection results show that positioning of interference destructive condition (node of standing wave field) on surface of multilayer in the local region of a phase defect is necessary(More)
Strongly coupled plasmons in a system of individual gold nanoparticles placed at subnanometer distance to a gold film (nanoparticle-on-plane, NPOP) are investigated using two complementary single particle spectroscopy techniques. Optical scattering spectroscopy exclusively detects plasmon modes that couple to the far field via their dipole moment (bright(More)
Field emission of electrons is generated solely by the ultrastrong near-field of strongly coupled plasmons without the help of a noticeable dc field. Strongly coupled plasmons are excited at Au nanoparticles in subnanometer distance to a Au film by femtosecond laser pulses. Field-emitted electrons from individual nanoparticles are detected by means of(More)
The quantitative theory of image contrast in an electron microscope in the mirror operation mode is given in this paper. This theory permits us to calculate the potential distribution on the object surface from the current density distribution on the microscope screen. The potential distribution results in image formation on the screen. Local electric(More)
We use photoemission electron microscopy in an X-ray transmission mode for full-field imaging of the X-ray absorption structure of copper in the respiratory metalloprotein hemocyanin KLH1. It contains 160 oxygen binding sites. Each site reversibly binds one molecule oxygen between two copper atoms. In our setup, hemocyanin is dissolved in aqueous solution(More)
O. N. Martyanov,1 V. F. Yudanov,1 R. N. Lee,2 S. A. Nepijko,3,4,* H. J. Elmers,4 R. Hertel,5 C. M. Schneider,5 and G. Schönhense4 1Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences, Prospekt Akademika Lavrentieva 5, 630090 Novosibirsk, C.I.S./Russia 2Budker Institute of Nuclear Physics, Siberian Branch of the Russian(More)
Using a photoelectron emission microscope (PEEM), we demonstrate spin-resolved electron spectroscopic imaging of ultrathin magnetic Co films grown on Cu(100). The spin-filter, based on the spin-dependent reflection of low energy electrons from a W(100) crystal, is attached to an aberration corrected electrostatic energy analyzer coupled to an electrostatic(More)
An emission electron microscope without restriction of the electron beams was used to visualize and measure the distribution of electric fields and potentials on the surface under study. Investigations of this kind can be performed in an emission electron microscope without any aperture diaphragm. The potentialities of this method have been demonstrated(More)