Gerd Bruno Rocha

Learn More
Twenty years ago, the landmark AM1 was introduced, and has since had an increasingly wide following among chemists due to its consistently good results and time-tested reliability--being presently available in countless computational quantum chemistry programs. However, semiempirical molecular orbital models still are of limited accuracy and need to be(More)
The recently published Parametric Method number 7, PM7, is the first semiempirical method to be successfully tested by modeling crystal structures and heats of formation of solids. PM7 is thus also capable of producing results of useful accuracy for materials science, and constitutes a great improvement over its predecessor, PM6. In this article, we present(More)
We have synthesized the Morita-Baylis-Hillman adduct (MBHA) 3-hydroxy-2-methylene-3-(4-nitrophenyl)-propanenitrile (3) in quantitative yield and evaluated on Trypanosoma cruzi epimastigote and bloodstream trypomastigote forms. Compound 3 strongly inhibited epimastigote growth, with IC(50)/72hof 28.5 microM and also caused intense trypomastigotes lysis, with(More)
Sixteen aromatic Morita-Baylis-Hillman adducts (MBHA) 1-16 were efficiently synthesized in a one step Morita-Baylis-Hillman reaction (MBHR) involving commercial aldehydes with methyl acrylate or acrylonitrile (81-100% yields) without the formation of side products on DABCO catalysis and at low temperature (0°C). The toxicities of these compounds were(More)
The sparkle/AM1 model for the quantum chemical prediction of coordination polyhedron crystallographic geometries from isolated lanthanide complex ion calculations, defined recently for Eu(III), Gd(III), and Tb(III) (Inorg. Chem. 2005, 44, 3299) is now extended to La(III) and Lu(III). Thus, for each of the metal ions we chose a training set of 15 complexes(More)
The recently defined Sparkle model for the quantum chemical prediction of geometries of lanthanum(III) and lutetium(III) complexes within AM1 (J. Phys. Chem. A 2006, 110, 5897) has been extended to PM3. As training sets, we used the same two groups, one for each lanthanide, of 15 high-crystallographic-quality (R factor < 0.05 A) complexes as was previously(More)
The Sparkle/PM3 model is extended to cerium(III) complexes. The validation procedure was carried out using only high quality crystallographic structures (R factor < 0.05Å), for a total of thirty-seven Ce(III) complexes. The Sparkle/PM3 unsigned mean error, for all interatomic distances between the Ce(III) ion and the directly coordinating oxygen or nitrogen(More)
In this study, we present some modifications in the semiempirical quantum chemistry MOPAC2009 code that accelerate single-point energy calculations (1SCF) of medium-size (up to 2500 atoms) molecular systems using GPU coprocessors and multithreaded shared-memory CPUs. Our modifications consisted of using a combination of highly optimized linear algebra(More)
Large-scale electronic structure calculations usually involve huge nonlinear eigenvalue problems. A method for solving these problems without employing expensive eigenvalue decompositions of the Fock matrix is presented in this work. The sparsity of the input and output matrices is preserved at every iteration, and the memory required by the algorithm(More)
In the present work, we sought to improve our sparkle model for the calculation of lanthanide complexes, SMLC,in various ways: (i) inclusion of the europium atomic mass, (ii) reparametrization of the model within AM1 from a new response function including all distances of the coordination polyhedron for tris(acetylacetonate)(1,10-phenanthroline)(More)